2,483,200 research outputs found
Automated data pre-processing via meta-learning
The final publication is available at link.springer.comA data mining algorithm may perform differently on datasets with different characteristics, e.g., it might perform better on a dataset with continuous attributes rather than with categorical attributes, or the other way around.
As a matter of fact, a dataset usually needs to be pre-processed. Taking into account all the possible pre-processing operators, there exists a staggeringly large number of alternatives and nonexperienced users become overwhelmed.
We show that this problem can be addressed by an automated approach, leveraging ideas from metalearning.
Specifically, we consider a wide range of data pre-processing techniques and a set of data mining algorithms. For each data mining algorithm and selected dataset, we are able to predict the transformations that improve the result
of the algorithm on the respective dataset. Our approach will help non-expert users to more effectively identify the transformations appropriate to their applications, and hence to achieve improved results.Peer ReviewedPostprint (published version
PRESISTANT: Learning based assistant for data pre-processing
Data pre-processing is one of the most time consuming and relevant steps in a
data analysis process (e.g., classification task). A given data pre-processing
operator (e.g., transformation) can have positive, negative or zero impact on
the final result of the analysis. Expert users have the required knowledge to
find the right pre-processing operators. However, when it comes to non-experts,
they are overwhelmed by the amount of pre-processing operators and it is
challenging for them to find operators that would positively impact their
analysis (e.g., increase the predictive accuracy of a classifier). Existing
solutions either assume that users have expert knowledge, or they recommend
pre-processing operators that are only "syntactically" applicable to a dataset,
without taking into account their impact on the final analysis. In this work,
we aim at providing assistance to non-expert users by recommending data
pre-processing operators that are ranked according to their impact on the final
analysis. We developed a tool PRESISTANT, that uses Random Forests to learn the
impact of pre-processing operators on the performance (e.g., predictive
accuracy) of 5 different classification algorithms, such as J48, Naive Bayes,
PART, Logistic Regression, and Nearest Neighbor. Extensive evaluations on the
recommendations provided by our tool, show that PRESISTANT can effectively help
non-experts in order to achieve improved results in their analytical tasks
PRESISTANT : data pre-processing assistant
A concrete classification algorithm may perform differently on datasets with different characteristics, e.g., it might perform better on a dataset with continuous attributes rather than with categorical attributes, or the other way around. Typically, in order to improve the results, datasets need to be pre-processed. Taking into account all the possible pre-processing operators, there exists a staggeringly large number of alternatives and non-experienced users become overwhelmed. Trial and error is not feasible in the presence of big amounts of data. We developed a method and tool—PRESISTANT, with the aim of answering the need for user assistance during data pre-processing. Leveraging ideas from meta-learning, PRESISTANT is capable of assisting the user by recommending pre-processing operators that ultimately improve the classification performance. The user selects a classification algorithm, from the ones considered, and then PRESISTANT proposes candidate transformations to improve the result of the analysis. In the demonstration, participants will experience, at first hand, how PRESISTANT easily and effectively ranks the pre-processing operators.Peer ReviewedPostprint (author's final draft
In the quest of vision-sensors-on-chip: Pre-processing sensors for data reduction
This paper shows that the implementation of vision systems benefits from the usage of sensing front-end chips with embedded pre-processing capabilities - called CVIS. Such embedded pre-processors reduce the number of data to be delivered for ulterior processing. This strategy, which is also adopted by natural vision systems, relaxes system-level requirements regarding data storage and communications and enables highly compact and fast vision systems. The paper includes several proof-o-concept CVIS chips with embedded pre-processing and illustrate their potential advantages. © 2017, Society for Imaging Science and Technology.Office of Naval Research (USA) N00014-14-1-0355Ministerio de Economía y Competitiviad TEC2015-66878-C3-1-R, TEC2015-66878-C3-3-RJunta de Andalucía 2012 TIC 233
Intelligent assistance for data pre-processing
A data mining algorithm may perform differently on datasets with different characteristics, e.g., it might perform better on a dataset with continuous attributes rather than with categorical attributes, or the other way around. Typically, a dataset needs to be pre-processed before being mined. Taking into account all the possible pre-processing operators, there exists a staggeringly large number of alternatives. As a consequence, non-experienced users become overwhelmed with pre-processing alternatives. In this paper, we show that the problem can be addressed by automating the pre-processing with the support of meta-learning. To this end, we analyzed a wide range of data pre-processing techniques and a set of classification algorithms. For each classification algorithm that we consider and a given dataset, we are able to automatically suggest the transformations that improve the quality of the results of the algorithm on the dataset. Our approach will help non-expert users to more effectively identify the transformations appropriate to their applications, and hence to achieve improved results.Postprint (author's final draft
On the role of pre and post-processing in environmental data mining
The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed
- …
