5,383 research outputs found

    Issues in providing a reliable multicast facility

    Get PDF
    Issues involved in point-to-multipoint communication are presented and the literature for proposed solutions and approaches surveyed. Particular attention is focused on the ideas and implementations that align with the requirements of the environment of interest. The attributes of multicast receiver groups that might lead to useful classifications, what the functionality of a management scheme should be, and how the group management module can be implemented are examined. The services that multicasting facilities can offer are presented, followed by mechanisms within the communications protocol that implements these services. The metrics of interest when evaluating a reliable multicast facility are identified and applied to four transport layer protocols that incorporate reliable multicast

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Physical Channel Access (PCA): Time and Frequency Access Methods Simulation in NS-2

    Get PDF
    We present an NS-2 module, Physical Channel Access (PCA), to simulate different access methods on a link shared with Multi-Frequency Time Division Multiple Access (MF-TDMA). This technique is widely used in various network technologies, such as satellite communication. In this context, different access methods at the gateway induce different queuing delays and available capacities, which strongly impact transport layer performance. Depending on QoS requirements, design of new congestion and ow control mechanisms and/or access methods requires evaluation through simulations. PCA module emulates the delays that packets will experience using the shared link, based on descriptive parameters of lower layers characteristics. Though PCA has been developed with DVB-RCS2 considerations in mind (for which we present a use case), other MF-TDMA-based applications can easily be simulated by adapting input parameters. Moreover, the presented implementation details highlight the main methods that might need modifications to implement more specific functionality or emulate other similar access methods (e.g., OFDMA)

    Physical Channel Access (PCA): Time and Frequency Access Methods Emulation in NS-2

    Full text link
    We present an NS-2 module, Physical Channel Access (PCA), to simulate different access methods on a link shared with Multi-Frequency Time Division Multiple Access (MF-TDMA). This tech- nique is widely used in various network technologies, such as satellite communication. In this context, different access methods at the gateway induce different queuing delays and available capacities, which strongly impact transport layer performance. Depending on QoS requirements, design of new congestion and flow control mechanisms and/or access methods requires evaluation through simulations. PCA module emulates the delays that packets will experience using the shared link, based on descriptive parameters of lower layers characteris- tics. Though PCA has been developed with DVB-RCS2 considerations in mind (for which we present a use case), other MF-TDMA-based appli- cations can easily be simulated by adapting input parameters. Moreover, the presented implementation details highlight the main methods that might need modifications to implement more specific functionality or emulate other similar access methods (e.g., OFDMA)

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented

    Building self-optimized communication systems based on applicative cross-layer information

    Get PDF
    This article proposes the Implicit Packet Meta Header(IPMH) as a standard method to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams using legacy and proprietary streams’ headers (e.g. Real-time Transport Protocol headers). The use of IPMH by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet selfoptimization of communication services regarding the actual application requirements. A case study showing how IPMH is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach

    Hastily Formed Networks (HFN) As an Enabler for the Emergency Response Community

    Get PDF
    The effects of natural or manmade disasters in communications infrastructures are so severe that immediately after the disaster the emergency responders are unable to use them. In addition, some areas do not have any useful infrastructure at all. To bridge this gap in communications, a need exists for a reliable technology not dependent on the existing infrastructure. This thesis focuses on first identifying the problem of communications gaps during natural or manmade disasters and reviewing the impact and potential benefit of implementing a solution based on the Hastily Formed Networks (HFN) model. The research explores the different technological solutions to solve this problem by evaluating documentation for commercial off-the-shelf technologies (COTS). Additionally, the thesis reviews the results of field experimentation conducted to evaluate the performance of these technologies in the field. The ultimate goal is to introduce the HFN concept as an enabler for the Emergency Response Community (ERC). Throughout this research, the focus revolves around testing COTS technologies. The research provides emergency responders with the background knowledge to make decisions on how to best bridge the gap of lack of communications under austere environments, and therefore enable them to provide better response.http://archive.org/details/hastilyformednet109456762Lieutenant Commander, United States Nav
    corecore