7,451 research outputs found

    Quantum Data Hiding

    Full text link
    We expand on our work on Quantum Data Hiding -- hiding classical data among parties who are restricted to performing only local quantum operations and classical communication (LOCC). We review our scheme that hides one bit between two parties using Bell states, and we derive upper and lower bounds on the secrecy of the hiding scheme. We provide an explicit bound showing that multiple bits can be hidden bitwise with our scheme. We give a preparation of the hiding states as an efficient quantum computation that uses at most one ebit of entanglement. A candidate data hiding scheme that does not use entanglement is presented. We show how our scheme for quantum data hiding can be used in a conditionally secure quantum bit commitment scheme.Comment: 19 pages, IEEE style, 8 figures, submitted to IEEE Transactions on Information Theor

    Quantum data hiding in the presence of noise

    Get PDF
    When classical or quantum information is broadcast to separate receivers, there exist codes that encrypt the encoded data such that the receivers cannot recover it when performing local operations and classical communication, but they can decode reliably if they bring their systems together and perform a collective measurement. This phenomenon is known as quantum data hiding and hitherto has been studied under the assumption that noise does not affect the encoded systems. With the aim of applying the quantum data hiding effect in practical scenarios, here we define the data-hiding capacity for hiding classical information using a quantum channel. Using this notion, we establish a regularized upper bound on the data hiding capacity of any quantum broadcast channel, and we prove that coherent-state encodings have a strong limitation on their data hiding rates. We then prove a lower bound on the data hiding capacity of channels that map the maximally mixed state to the maximally mixed state (we call these channels "mictodiactic"---they can be seen as a generalization of unital channels when the input and output spaces are not necessarily isomorphic) and argue how to extend this bound to generic channels and to more than two receivers.Comment: 12 pages, accepted for publication in IEEE Transactions on Information Theor

    Quantum data hiding with spontaneous parameter down-conversion

    Get PDF
    Here we analyze the practical implication of the existing quantum data hiding protocol with Bell states produced with optical downconverter. We show that the uncertainty for the producing of the Bell states with spontaneous parameter down-conversion should be taken into account, because it will cause serious trouble to the hider encoding procedure. A set of extended Bell states and a generalized Bell states analyzer are proposed to describe and analyze the possible states of two photons distributing in two paths. Then we present a method to integrate the above uncertainty of Bell states preparation into the dating hiding procedure, when we encode the secret with the set of extended Bell states. These modifications greatly simplify the hider's encoding operations, and thus paves the way for the implementation of quantum data hiding with present-day quantum optics.Comment: 4 pages, 1 figure, adding some analyse for security proof, to be appear in Phys. Rev.
    • …
    corecore