800 research outputs found

    Reduced Order Modeling for Nonlinear PDE-constrained Optimization using Neural Networks

    Full text link
    Nonlinear model predictive control (NMPC) often requires real-time solution to optimization problems. However, in cases where the mathematical model is of high dimension in the solution space, e.g. for solution of partial differential equations (PDEs), black-box optimizers are rarely sufficient to get the required online computational speed. In such cases one must resort to customized solvers. This paper present a new solver for nonlinear time-dependent PDE-constrained optimization problems. It is composed of a sequential quadratic programming (SQP) scheme to solve the PDE-constrained problem in an offline phase, a proper orthogonal decomposition (POD) approach to identify a lower dimensional solution space, and a neural network (NN) for fast online evaluations. The proposed method is showcased on a regularized least-square optimal control problem for the viscous Burgers' equation. It is concluded that significant online speed-up is achieved, compared to conventional methods using SQP and finite elements, at a cost of a prolonged offline phase and reduced accuracy.Comment: Accepted for publishing at the 58th IEEE Conference on Decision and Control, Nice, France, 11-13 December, https://cdc2019.ieeecss.org

    Parameter Identification by Deep Learning of a Material Model for Granular Media

    Full text link
    Classical physical modelling with associated numerical simulation (model-based), and prognostic methods based on the analysis of large amounts of data (data-driven) are the two most common methods used for the mapping of complex physical processes. In recent years, the efficient combination of these approaches has become increasingly important. Continuum mechanics in the core consists of conservation equations that -- in addition to the always necessary specification of the process conditions -- can be supplemented by phenomenological material models. The latter are an idealized image of the specific material behavior that can be determined experimentally, empirically, and based on a wealth of expert knowledge. The more complex the material, the more difficult the calibration is. This situation forms the starting point for this work's hybrid data-driven and model-based approach for mapping a complex physical process in continuum mechanics. Specifically, we use data generated from a classical physical model by the MESHFREE software to train a Principal Component Analysis-based neural network (PCA-NN) for the task of parameter identification of the material model parameters. The obtained results highlight the potential of deep-learning-based hybrid models for determining parameters, which are the key to characterizing materials occurring naturally, and their use in industrial applications (e.g. the interaction of vehicles with sand).Comment: arXiv admin note: text overlap with arXiv:2212.0313

    A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs

    Get PDF
    Traditional reduced order modeling techniques such as the reduced basis (RB) method (relying, e.g., on proper orthogonal decomposition (POD)) suffer from severe limitations when dealing with nonlinear time-dependent parametrized PDEs, because of the fundamental assumption of linear superimposition of modes they are based on. For this reason, in the case of problems featuring coherent structures that propagate over time such as transport, wave, or convection-dominated phenomena, the RB method usually yields inefficient reduced order models (ROMs) if one aims at obtaining reduced order approximations sufficiently accurate compared to the high-fidelity, full order model (FOM) solution. To overcome these limitations, in this work, we propose a new nonlinear approach to set reduced order models by exploiting deep learning (DL) algorithms. In the resulting nonlinear ROM, which we refer to as DL-ROM, both the nonlinear trial manifold (corresponding to the set of basis functions in a linear ROM) as well as the nonlinear reduced dynamics (corresponding to the projection stage in a linear ROM) are learned in a non-intrusive way by relying on DL algorithms; the latter are trained on a set of FOM solutions obtained for different parameter values. In this paper, we show how to construct a DL-ROM for both linear and nonlinear time-dependent parametrized PDEs; moreover, we assess its accuracy on test cases featuring different parametrized PDE problems. Numerical results indicate that DL-ROMs whose dimension is equal to the intrinsic dimensionality of the PDE solutions manifold are able to approximate the solution of parametrized PDEs in situations where a huge number of POD modes would be necessary to achieve the same degree of accuracy.Comment: 28 page

    Model Reduction and Neural Networks for Parametric PDEs

    Get PDF
    We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature

    Multi-fidelity reduced-order surrogate modeling

    Full text link
    High-fidelity numerical simulations of partial differential equations (PDEs) given a restricted computational budget can significantly limit the number of parameter configurations considered and/or time window evaluated for modeling a given system. Multi-fidelity surrogate modeling aims to leverage less accurate, lower-fidelity models that are computationally inexpensive in order to enhance predictive accuracy when high-fidelity data are limited or scarce. However, low-fidelity models, while often displaying important qualitative spatio-temporal features, fail to accurately capture the onset of instability and critical transients observed in the high-fidelity models, making them impractical as surrogate models. To address this shortcoming, we present a new data-driven strategy that combines dimensionality reduction with multi-fidelity neural network surrogates. The key idea is to generate a spatial basis by applying the classical proper orthogonal decomposition (POD) to high-fidelity solution snapshots, and approximate the dynamics of the reduced states - time-parameter-dependent expansion coefficients of the POD basis - using a multi-fidelity long-short term memory (LSTM) network. By mapping low-fidelity reduced states to their high-fidelity counterpart, the proposed reduced-order surrogate model enables the efficient recovery of full solution fields over time and parameter variations in a non-intrusive manner. The generality and robustness of this method is demonstrated by a collection of parametrized, time-dependent PDE problems where the low-fidelity model can be defined by coarser meshes and/or time stepping, as well as by misspecified physical features. Importantly, the onset of instabilities and transients are well captured by this surrogate modeling technique
    • …
    corecore