
Journal of Scientific Computing (2021) 87:61
https://doi.org/10.1007/s10915-021-01462-7

A Comprehensive Deep Learning-Based Approach to
Reduced Order Modeling of Nonlinear Time-Dependent
Parametrized PDEs

Stefania Fresca1 · Luca Dede’1 · Andrea Manzoni1

Received: 23 June 2020 / Revised: 19 January 2021 / Accepted: 15 March 2021
© The Author(s) 2021

Abstract
Conventional reduced order modeling techniques such as the reduced basis (RB) method
(relying, e.g., on proper orthogonal decomposition (POD)) may incur in severe limita-
tions when dealing with nonlinear time-dependent parametrized PDEs, as these are strongly
anchored to the assumption of modal linear superimposition they are based on. For problems
featuring coherent structures that propagate over time such as transport, wave, or convection-
dominated phenomena, the RB method may yield inefficient reduced order models (ROMs)
when very high levels of accuracy are required. To overcome this limitation, in this work, we
propose a new nonlinear approach to set ROMs by exploiting deep learning (DL) algorithms.
In the resulting nonlinear ROM, which we refer to as DL-ROM, both the nonlinear trial man-
ifold (corresponding to the set of basis functions in a linear ROM) as well as the nonlinear
reduced dynamics (corresponding to the projection stage in a linear ROM) are learned in a
non-intrusive way by relying on DL algorithms; the latter are trained on a set of full order
model (FOM) solutions obtained for different parameter values. We show how to construct
a DL-ROM for both linear and nonlinear time-dependent parametrized PDEs. Moreover, we
assess its accuracy and efficiency on different parametrized PDE problems. Numerical results
indicate that DL-ROMs whose dimension is equal to the intrinsic dimensionality of the PDE
solutions manifold are able to efficiently approximate the solution of parametrized PDEs,
especially in cases for which a huge number of POD modes would have been necessary to
achieve the same degree of accuracy.

Keywords Parametrized PDEs · Nonlinear time-dependent PDEs · Reduced order
modeling · Deep learning · Proper orthogonal decomposition

B Andrea Manzoni
andrea1.manzoni@polimi.it

Stefania Fresca
stefania.fresca@polimi.it

Luca Dede’
luca.dede@polimi.it

1 MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano,
Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01462-7&domain=pdf
http://orcid.org/0000-0001-8277-2802

 61 Page 2 of 36 Journal of Scientific Computing (2021) 87:61

Mathematics Subject Classification 65M60 · 68T01

1 Introduction

The solution of a parametrized system of partial differential equations (PDEs) by means of a
full-order model (FOM), whenever dealing with real-time or multi-query scenarios, entails
prohibitive computational costs if the FOM is high-dimensional. In the former case, the FOM
solutionmust be computed in a very limited amount of time; in the latter one, the FOMmust be
solved for a huge number of parameter instances sampled from the parameter space. Reduced
order modeling techniques aim at replacing the FOM by a reduced order model (ROM),
featuring a much lower dimension, which is still able to express the physical features of the
problem described by the FOM. The basic assumption underlying the construction of such
a ROM is that the solution of a parametrized PDE, belonging a priori to a high-dimensional
(discrete) space, lies on a low-dimensional manifold embedded in this space. The goal of
a ROM is then to approximate the solution manifold– that is, the set of all PDE solutions
when the parameters vary in the parameter space—through a suitable, approximated trial
manifold.

A widespread family of reduced order modeling techniques relies on the assumption that
the reduced order approximation can be expressed by a linear combination of basis func-
tions, built starting from a set of FOM solutions, called snapshots. Among these techniques,
proper orthogonal decomposition (POD) exploits the singular value decomposition of a suit-
able snapshot matrix (or the eigen-decomposition of the corresponding snapshot correlation
matrix), thus yielding linear ROMs, that is ROMs employing linear trial spaces, in which
the ROM approximation is given by the linear superimposition of POD modes. In this case,
the solution manifold is approximated through a linear trial manifold, that is, the ROM
approximation is sought in a low-dimensional linear trial subspace.

Projection-based methods are linear ROMs in which the ROM approximation of the PDE
solution, for any new parameter value, results from the solution of a low-dimensional (non-
linear, dynamical) system, whose unknowns are the ROMdegrees of freedom (or generalized
coordinates). Despite the PDE (and thus the FOM) being linear or not, the operators appear-
ing in the ROM are obtained by imposing that the projection of the FOM residual evaluated
on the ROM trial solution is orthogonal to a low-dimensional, linear test subspace, which
might coincide with the trial subspace. Hence, the resulting ROM manifold is linear, that is,
the ROM approximation is expressed as the linear combination of a set of basis functions. In
particular, in projection-based ROMs, the reduced dynamics is obtained through a projection
process onto a linear subspace [9,10,48]. However, linear ROMs might experience compu-
tational bottlenecks at different extents when dealing with parametrized problems featuring
coherent structures (possibly dependent on parameters) that propagate over time, namely in
transport and wave-type phenomena, or convection-dominated flows, as soon as the physical
behavior under analysis is strongly affected by parametric dependence. Indeed, fluid flows
past complex geometries, featuring either turbulence effects or shocks and boundary layers,
have been addressed by linear ROMs, showing extremely good performance when the ROM
is tested for the same parameter values used to collect simulation data offline [15], or when
the solution exhibits a mild dependence on parametric variations [64]. For larger parametric
variations, or stronger dependence of coherent structures from parameters, the dimension
of the linear trial manifold can easily become extremely large (if compared to the intrinsic

123

Journal of Scientific Computing (2021) 87:61 Page 3 of 36 61

dimension of the solution manifold) thus compromising the ROM efficiency. To overcome
this issue, ad-hoc extensions of the POD strategy have been considered, see, e.g., [43,45].

In this paper, we propose a computational, non-intrusive approach based on deep learning
(DL) algorithms to deal with the construction of efficient ROMs (which we refer to as
DL-ROMs) in order to tackle parameter-dependent PDEs; in particular, we consider PDEs
that feature wave-type phenomena. A comprehensive framework is presented for the global
approximation of themap (t,μ) �→ uh(t,μ), where t ∈ (0, T) denotes time,μ ∈ P ⊂ R

nμ a
vector of input parameters and uh(t,μ) ∈ R

Nh the solution of a large-scale dynamical system
arising from the space discretization of a parametrized, time-dependent (non)linear PDE.
Several recent works have shown possible applications of DL techniques to parametrized
PDEs – thanks to their approximation capabilities, their extremely favorable computational
performance during online testing phases, and their relative ease of implementation – both
from a theoretical [35] and a computational standpoint. Regarding this latter aspect, artificial
neural networks (ANNs), such as feedforward neural networks, have been employed to
model the reduced dynamics in a data-driven [55], and less intrusive way (avoiding, e.g.,
the costs entailed by projection-based ROMs), but still relying on a linear trial manifold
built, e.g., through POD. For instance, in [26,27,29,59] the solution of a (nonlinear, time-
dependent) ROM for any new parameter value has been replaced by the evaluation of ANN-
based regression models; similar ideas can be found, e.g., in [32,41,62]. Few attempts have
been made in order to describe the reduced trial manifold where the approximation is sought
(avoiding, e.g., the linear superimposition of POD modes) through ANNs, see, e.g., [37,40].

For instance, a projection-based ROM technique has been introduced in [37], in which the
FOM system is projected onto a nonlinear trial manifold identified by means of the decoder
function of a convolutional autoencoder.However, theROM is defined by aminimum residual
formulation, for which the quasi-Newton method herein employed requires the computation
of an approximated Jacobian of the residual at each time instant. A ROM technique based
on a deep convolutional recurrent autoencoder has been proposed in [40], where a reduced
trial manifold is generated through a convolutional autoencoder; the latter is then used to
train a Long Short-Term Memory (LSTM) neural network modeling the reduced dynamics.
However, even if in principle LSTMs can handle parameters through the input at each time
instance or the initial hidden state, explicit parameter dependence in the PDE problem is not
considered in [40], apart fromμ-dependent initial data. LSTMs have been recently employed
in [63] to realize efficient closure models based on the Mori-Zwanzig formalism, in order
to improve the stability and accuracy of projection-based ROMs; in particular, LSTMs are
used as the regression model of the memory integral which represents the impact of the
unresolved scales. Another promising application of machine learning techniques within a
ROM framework deals with the efficient evaluation of ROM errors, see, e.g., [22,44,46,61].

Our goal is to set up nonlinear ROMs whose dimension is nearly equal (if not equal)
to the intrinsic dimension of the solution manifold that we aim at approximating. Our DL-
ROM approach combines and improves the techniques introduced in [37,40] by shaping
an all-inclusive DL-based ROM technique, where we both (1) construct the reduced trial
manifold and (2) model the reduced dynamics on it by employing ANNs. The former task
is achieved by using the decoder function of a convolutional autoencoder; the latter task is
instead carried out by considering a feedforward neural network and the encoder function
of a convolutional autoencoder. Moreover, we set up a computational procedure performing
the training of both network architectures simultaneously, by minimizing a loss function
that weights two terms, one dedicated to each single task. In this respect, we are able to
design a flexible framework capable of handling parameters affecting both PDE operators
and data, which avoids both the expensive projection stage of [37] and the training of a more

123

 61 Page 4 of 36 Journal of Scientific Computing (2021) 87:61

expensive LSTM network. In our technique, the intrusive construction of a ROM is replaced
by the evaluation of the ROM generalized coordinates through a deep feedforward neural
network taking only (t,μ) as inputs. The proposed technique is purely data-driven, that is, it
only relies on the computation of a set of FOM snapshots—in this respect, we do not replace
standard numerical methods to solve the FOM by DL algorithms as, e.g., in the works by
Karniadakis and coauthors [50–54] where the FOM is replaced by a physics-informed neural
network (PINN) trained by minimizing the residual of the PDE; rather, DL techniques are
built upon the high-fidelity FOM, to enhance its repeated evaluation for different values of
the parameters.

The structure of the paper is as follows. In Sect. 2 we show how to generate nonlinear
ROMs by reinterpreting the classical ideas behind linear ROMs for parametrized PDEs. In
Sect. 3 we detail the construction of the proposed DL-ROM, whose accuracy and efficiency
are numerically assessed in Sect. 4 by considering three different test cases of increasing
complexity (with respect to the parametric dependence, the nature of the PDE, and the spatial
dimension). Finally, the conclusions are drawn in Sect. 5. A quick overview of useful facts
about neural networks is reported in the Appendix A to make the paper self-contained.

2 From Linear to Nonlinear Dimensionality Reduction

Starting from the well-known setting of linear (projection-based) ROMs, in this section we
generalize this task to the case of nonlinear ROMs.

2.1 Problem Formulation

We formulate the construction of ROMs in algebraic terms, starting from the high-fidelity
(spatial) approximation of nonlinear, time-dependent, parametrized PDEs. By introducing
suitable space discretizations techniques (such as, e.g., the Finite Element method, Isogeo-
metric Analysis or the Spectral Element method) the high-fidelity, full order model (FOM)
can be expressed as a nonlinear parametrized dynamical system. Given μ ∈ P , we aim at
solving the initial value problem{

u̇h(t;μ) = f(t,uh(t;μ);μ), t ∈ (0, T),

uh(0;μ) = u0(μ),
(1)

where the parameter spaceP ⊂ R
nμ is a bounded and closed set,uh : [0, T)×P → R

Nh is the
parametrized solution of (1), u0 : P → R

Nh is the initial datum and f : (0, T)×R
Nh ×P →

R
Nh is a (nonlinear) function, encoding the system dynamics.
The FOM dimension Nh is related with the finite dimensional subspaces introduced for

the space discretization of the PDE – here h > 0 usually denotes a discretization parameter,
such as the maximum diameter of elements in a computational mesh – and can be extremely
small whenever the PDE problem shows complex physical behaviors and/or high degrees of
accuracy are required to its solution. The parameterμ ∈ P may represent physical or geomet-
rical properties of the system, like, e.g., material properties, initial and boundary conditions,
or the shape of the domain. In order to solve problem (1), suitable time discretizations are
employed, such as backward differentiation formulas [49].

Our goal is the efficient numerical approximation of the whole set

Sh = {uh(t;μ) | t ∈ [0, T) and μ ∈ P ⊂ R
nμ} ⊂ R

Nh , (2)

123

Journal of Scientific Computing (2021) 87:61 Page 5 of 36 61

Fig. 1 A two-dimensional manifold embedded in R
3. Each curve represents the time-evolution of the first

three components of the solution of a (nonlinear) parametrized PDE for a fixed parameter value μ

of solutions to problem (1) when (t;μ) varies in [0, T) × P , also referred to as solution
manifold (a sketch is provided in Fig. 1). Assuming that, for any given parameter μ ∈ P ,
problem (1) admits a unique solution, for each t ∈ (0, T), the intrinsic dimension of the
solution manifold is at most nμ + 1 � Nh , where nμ is the number of parameters (time
plays the role of an additional coordinate). This means that each point uh(t;μ) belonging
to Sh is completely defined in terms of at most nμ + 1 intrinsic coordinates, or equivalently,
the tangent space to the manifold at any given uh(t;μ) is spanned by nμ + 1 basis vectors.

2.2 Linear Dimensionality Reduction: Projection-Based ROMs

The most common way to build a ROM for approximating problem (1) relies on the intro-
duction of a reduced linear trial manifold, that is of a subspace S̃n = Col(V) of dimension
n � Nh , spanned by the n columns of a matrix V ∈ R

Nh×n . Hence, a linear ROM looks for
an approximation ũh(t;μ) ≈ uh(t;μ) in the form

ũh(t;μ) = Vun(t;μ), (3)

where ũh : [0, T) × P → S̃n .
Here un(t;μ) ∈ R

n for each t ∈ [0, T), μ ∈ P denotes the vector of intrinsic coordinates
(or degrees of freedom) of the ROM approximation; note that the map

Ψ h : Rn → R
Nh , sn �→ s̃h = V sn

that, given the (low-dimensional) intrinsic coordinates, returns the (high-dimensional)
approximation of the FOM solution uh(t;μ), is linear.

POD is one of the most widely employed techniques to generate the linear trial manifold
[48]. Considering a set of Ntrain instances of the parameterμ ∈ P , we introduce the snapshot
matrix S ∈ R

Nh×Ns ,

S = [uh(t1;μ1) | . . . |uh(t Nt ;μ1) | . . . |uh(t1;μNtrain
) | . . . |uh(t Nt ;μNtrain

)],

123

 61 Page 6 of 36 Journal of Scientific Computing (2021) 87:61

considering a partition of [0, T] in Nt time steps {tk}Nt
k=1, t

k = k�t , of size �t = T /Nt

and Ns = Ntrain Nt . Moreover, let us introduce a symmetric and positive definite matrix
Xh ∈ R

Nh×Nh encoding a suitable norm (e.g., the energy norm) on the high-dimensional
space and admitting a Cholesky factorization Xh = HT H . POD computes the singular value
decomposition (SVD) of HS,

HS = U�ZT ,

where U = [ζ 1| . . . |ζ Nh
] ∈ R

Nh×Nh , Z = [ψ1| . . . |ψNs
] ∈ R

Ns×Ns and � =
diag(σ1, . . . , σr) ∈ R

Nh×Ns with σ1 ≥ σ2 ≥ . . . ≥ σr , and r ≤ min(Nh, Ns), and
sets the columns of V in terms of the first n left singular vectors of S that is, V =
[H−1ζ 1| . . . |H−1ζ n]. By construction, the columns of V are orthonormal (with respect
to the scalar product (· , ·)Xh) and among all possible n-dimensional subspaces spanned by
the column of a matrix W ∈ R

Nh×n , V provides the best reconstruction of the snapshots,
that is,

Ntrain∑
i=1

Nt∑
k=1

‖uh(tk;μi) − VV T Xhuh(tk;μi)‖2Xh

= min
W∈Vn

Ntrain∑
i=1

Nt∑
k=1

‖uh(tk;μi) − WWT Xhuh(tk;μi)‖2Xh
,

(4)

where Vn = {W ∈ R
Nh×n : WT XhW = I }; here VV T Xhuh(t;μ) is the optimal-POD

reconstruction of uh(t;μ) onto a reduced subspace of dimension n < Nh .
Tomodel the reduced dynamics of the system, that is, the time-evolution of the generalized

coordinates un(t;μ), we can replace uh(t;μ) by (3) in system (1),{
V u̇n(t;μ) = f(t, Vun(t;μ);μ) t ∈ (0, T)

Vun(0;μ) = u0(μ),
(5)

and impose that the residual

rh(Vun(t;μ)) = V u̇n(t;μ) − f(t, Vun(t;μ);μ) (6)

associated to the first equation of (5) is orthogonal to an n-dimensional subspace spanned
by the column of a matrix Y ∈ R

Nh×n , that is, Y T rh(Vun) = 0. This condition yields the
following ROM {

Y T V u̇n(t;μ) = Y T f(t, Vun(t;μ);μ) t ∈ (0, T)

un(0;μ) = (Y T V)−1Y T u0(μ).
(7)

If Y = V , a Galerkin projection is performed, while the case Y �= V yields a more general
Petrov-Galerkin projection. Note that choosing Y such that Y T V = I ∈ R

Nh×Nh does not
automatically ensure ROM stability on long time intervals.

Although POD-(Petrov-)Galerkin methods have been successfully applied to a broad
range of parametrized time-dependent (non)linear problems (see, e.g., [39,45]), they usually
provide low-dimensional subspaces of dimension n � nμ + 1 much larger than the intrinsic
dimension of the solution manifold – relying on a linear, global trial manifold thus represents
a major bottleneck to computational efficiency [43,45]. The same difficulty may also affect
hyper-reduction techniques, such as the (discrete) empirical interpolation method [8,16].
Such hyper-reduction techniques are essential to assemble the operators appearing in the
ROM (7) in order not to rely on expensive Nh-dimensional arrays [20].

123

Journal of Scientific Computing (2021) 87:61 Page 7 of 36 61

2.3 Nonlinear Dimensionality Reduction

A first attempt to overcome the computational issues entailed by the use of a linear, global
trial manifold is to build a piecewise linear trial manifold, using local reduced bases whose
dimension is smaller than the one of the global linear trial manifold. Clustering algorithms
applied on a set of snapshots can be employed to partition them into Nc clusters from which
POD can extract a subspace of reduced dimension; the ROM is then obtained by following
the strategy described above on each cluster separately [5,6]. An alternative approach based
on classification binary trees has been introduced in [4]. These strategies have been employed
(and compared) in [45] in order to solve parametrized problems in cardiac electrophysiology.
Using a piecewise linear trial manifold only partially overcomes the limitation of linear
ROMs; indeed local basesmight still have a dimensionwhich ismuch higher than the intrinsic
dimension of the solution manifold Sh . An approach based on a dictionary of solutions,
computed offline, has been developed in [2] as an alternative to using POD modes, together
with an online L1-norm minimization of the residual.

Other possible options involving nonlinear transformations of modes might rely on a
reconstruction of the POD modes at each time step using Lax pairs [23], on the solution
of Monge-Kantorovich optimal transport problems [31], on a problem-dependent change of
coordinates requiring the solution of an optimization problem repeatedly [14], on shifted POD
modes [56] after multiple transport velocities have been identified and separated, or again
basis updates are derived from querying the FOM at a few selected spatial coordinates [47].
Despite providing remarkable improvements compared to the classic (Petrov-)Galerkin-POD
approach, all these strategies exhibit some drawbacks, such as: (1) the high computational
costs entailed during the online testing evaluation stage of the ROM – which is not restricted
to the intensive offline training stage; (2) performance and settings are highly dependent
on the problem at hand; (3) the need to deal only with a linear superimposition of modes
(which characterizes linear ROMs), yielding low-dimensional spaces whose dimension is
still (much) higher than the intrinsic dimension of the solution manifold.

Motivated by the need of avoiding the drawbacks of linear ROMs and setting a general
paradigm for the construction of efficient, extremely low-dimensional ROMs, we resort to
nonlinear dimensionality reduction techniques.

We build a nonlinear ROM to approximate uh(t;μ) ≈ ũh(t;μ) by

ũh(t;μ) = Ψ h(un(t;μ)), (8)

where Ψ h : Rn → R
Nh , Ψ h : sn �→ Ψ h(sn), n � Nh , is a nonlinear, differentiable function;

similar approaches can be found in [37,40]. As a matter of fact, the solution manifold Sh is
approximated by a reduced nonlinear trial manifold

S̃n = {Ψ h(un(t;μ)) | un(t;μ) ∈ R
n, t ∈ [0, T) and μ ∈ P ⊂ R

nμ} ⊂ R
Nh (9)

so that ũh : [0, T) × P → S̃n . As before, un : [0, T) × P → R
n denotes the vector-valued

function of two arguments representing the intrinsic coordinates of the ROM approximation.
Our goal is to set a ROMwhose dimension n is as close as possible to the intrinsic dimension
nμ +1 of the solution manifold Sh , i.e. n ≥ nμ +1, in order to correctly capture the solution
of the dynamical system by containing the size of the approximation spaces [37].

Tomodel the relationship between each couple (t,μ) �→ un(t,μ), and to describe the sys-
tem dynamics on the reduced nonlinear trial manifold S̃n in terms of the intrinsic coordinates,
we consider a nonlinear map under the form

un(t;μ) = Φn(t;μ), (10)

123

 61 Page 8 of 36 Journal of Scientific Computing (2021) 87:61

where Φn : [0, T) × R
nμ → R

n is a differentiable, nonlinear function. No additional
assumptions such as, e.g., the (exact, or approximate) affine μ-dependence as in the RB
method, are required.

3 A Deep Learning-Based Reduced Order Model (DL-ROM)

We now detail the construction of the proposed nonlinear ROM. In this respect, we define the
functions Ψ h and Φn in (8) and (10) by means of DL algorithms, exploiting neural network
architectures. Besides their ability of effectively approximating nonlinear maps, learning
from data, and generalizing to unseen data, neural networks enable us to build non-intrusive,
purely data-driven ROMs. In particular, the construction of DL-ROMs only requires to access
the snapshot matrix and the corresponding parameter values, but not the high-dimensional
FOM operators appearing in (1). The DL-ROM technique is composed by two main blocks
responsible, respectively, for the reduced dynamics learning and the reduced trial manifold
learning (see Fig. 2). Hereon, we denote by Ntrain , Ntest and Nt the number of training-
parameter, testing-parameter, and time instances, respectively, and set Ns = Ntrain Nt . The
dimension of both the FOM solution and the ROM approximation is Nh , while n � Nh

denotes the number of intrinsic coordinates.
For the description of the system dynamics on the reduced nonlinear trial manifold

(reduced dynamics learning), we employ a deep feedforward neural network (DFNN) with
L layers, that is, we define the function Φn in (10) as

Φn(t;μ, θDF) = φDF
n (t;μ, θDF), (11)

thus yielding the map

(t,μ) �→ un(t;μ, θDF) = φDF
n (t;μ, θDF),

where φDF
n takes the form (31), with t ∈ [0, T), and results from the subsequent composition

of a nonlinear activation function, with a linear transformation of the input, L times. Here
θDF denotes the vector of parameters of the DFNN.

Regarding instead the description of the reduced nonlinear trial manifold S̃n defined in
(9) (reduced trial manifold learning), we employ the decoder function of a convolutional
autoencoder (AE), that is, we define the function Ψ h appearing in (8) and (9) as

Ψ h(un(t;μ, θDF); θD) = fDh (un(t;μ, θDF); θD), (12)

thus yielding the map

un(t;μ, θDF) �→ ũh(t;μ, θ) = fDh (un(t;μ, θDF); θD),

where fDh results from the composition of several (possibly, convolutional) layers, overall
depending on the vector θD of parameters of the decoder function.

Combining the two former stages, the DL-ROM approximation is given by

ũh(t;μ, θ) = fDh (φDF
n (t;μ, θDF); θD), (13)

where φDF
n (·; ·, θDF) : [0, T) × R

nμ → R
n and fDh (·; θD) : Rn → R

Nh are defined as
in (11) and (12), respectively, and θ = (θDF , θD) are the parameters defining the neural
network. The architecture of DL-ROM is shown in Fig. 2.

Computing the ROM approximation (13) for any new value of μ ∈ P , at any given time,
requires evaluation of the map (t,μ) → ũh(t;μ, θ) at the testing stage, once the parameters

123

Journal of Scientific Computing (2021) 87:61 Page 9 of 36 61

Fig. 2 DL-ROM architecture (online stage, testing)

θ = (θDF , θD) have been determined, once and for all, during the training stage. The
training stage consists in solving an optimization problem (in the variable θ) after a set of
snapshots of the FOM have been computed. More precisely, provided the parameter matrix
M ∈ R

(nμ+1)×Ns defined as

M = [(t1,μ1)| . . . |(t Nt ,μ1)| . . . |(t1,μNtrain
)| . . . |(t Nt ,μNtrain

)], (14)

and the snapshot matrix S, we find the optimal parameters θ∗ solution of

J (θ) = 1

Ns

Ntrain∑
i=1

Nt∑
k=1

L(tk,μi ; θ) → min
θ

(15)

where

L(tk,μi ; θ) = 1

2
‖uh(tk;μi) − ũh(tk;μi , θ)‖2

= 1

2
‖uh(tk;μi) − fDh (φDF

n (tk;μi , θDF); θD)‖2.
(16)

To solve the optimization problem (15 and 16) we use the ADAM algorithm [33] which
is a stochastic gradient descent method [57] computing an adaptive approximation of the
first and second momentum of the gradients of the loss function. In particular, it computes
exponentially weighted moving averages of the gradients and of the squared gradients. We
set the starting learning rate to η = 10−4, the batch size to Nb = 20 and the maximum
number of epochs to Nepochs = 10000. We perform cross-validation, in order to tune the
hyperparameters of the DL-ROM, by splitting the data in training and validation sets, with
a proportion 8:2. Moreover, we implement an early-stopping regularization technique to
reduce overfitting [25], arresting the training if the loss does not decrease over 500 epochs.
As nonlinear activation function we employ the ELU function [18] defined as

σ(z) =
{
z z ≥ 0

exp(z) − 1 z < 0.

No activation function is applied at the last convolutional layer of the decoder neural network,
as usually done when dealing with AEs. The parameters, weights and biases, are initialized
through the He uniform initialization [28].

As we rely on a convolutional AE to define the function Ψ h , we also exploit the encoder
function

ũn(t;μ, θ E) = fEn (uh(t;μ); θ E), (17)

123

 61 Page 10 of 36 Journal of Scientific Computing (2021) 87:61

Fig. 3 DL-ROM architecture (offline stage, training and validation)

whichmaps each FOM solution associated to (t;μ) ∈ Col(M) provided as inputs to the feed-
forward neural network (11), onto a low-dimensional representation ũn(t;μ, θ E) depending
on the parameters vector θ E defining the encoder function.

Indeed, the actual architecture ofDL-ROMused only during the training and the validation
phases, but not during testing, is the one shown in Fig. 3.

In practice, we add to the DL-ROM architecture introduced above the encoder function
of the convolutional AE. This produces an additional term in the per-example loss function
(16), yielding the following optimization problem:

min
θ

J (θ) = min
θ

1

Ns

Ntrain∑
i=1

Nt∑
k=1

L(tk,μi ; θ), (18)

where
L(tk,μi ; θ) = ωh

2
‖uh(tk;μi) − ũh(tk;μi , θDF , θD)‖2

+1 − ωh

2
‖ũn(tk;μi , θ E) − un(tk;μi , θDF)‖2

(19)

and θ = (θ E , θDF , θD), with ωh ∈ [0, 1]. The per-example loss function (19) combines
the reconstruction error (that is, the error between the FOM solution and the DL-ROM
approximation) and the error between the intrinsic coordinates and the output of the encoder.

Remark 1 Training the convolutional AE and the DFNN simultaneously by including in the
loss function the second term appearing in (19) allows to improve the overall DL-ROM
performance. Indeed, feeding the intrinsic coordinates (provided as outputs by the DFNN)
as inputs to the decoder function fDh , enhances the model robustness, making the neural
network stable with respect to possible perturbations affecting the output of the DFNN un .
Moreover, training the neural networks all at once results in updates of the DFNN parameters
θDF depending not only on the gradients of the error between the intrinsic coordinates and

123

Journal of Scientific Computing (2021) 87:61 Page 11 of 36 61

the encoder output, but also on the gradients of the reconstruction error. On the test cases
presented in this work, training the convolutional AE and the DFNN simultaneously impacts
both on the accuracy and computational times. For instance, aswewill see in Test 3.1, training
the convolutional AE and the DFNN separately, which consists in training the convolutional
AE, projecting the FOM snapshots onto the latent space to generate training data for the
DFNN, and finally training the DFNN, entails a 15%more expensive training stage, however
yielding a higher error indicator εrel = 7.2×10−3 (compared to the value reported in Fig. 19).

3.1 Training and Testing Algorithms

Let us now detail the algorithms throughwhich the training and testing phases of the networks
are performed. First of all, data normalization and standardization enhance the training phase
of the network by rescaling all the dataset values to a common frame. For this reason, the
inputs and the output of DL-ROM are rescaled in the range [0, 1] by applying an affine
transformation. In particular, provided the training parameter matrix Mtrain ∈ R

(nμ+1)×Ns ,
we define

Mi
max = max

j=1,...,Ns
Mtrain

i j ∈ R
(nμ+1), Mi

min = min
j=1,...,Ns

Mtrain
i j ∈ R

(nμ+1), (20)

so that data are normalized by applying the following transformation

Mtrain
i j �→ Mtrain

i j − Mi
max

Mi
max − Mi

min

, i = 1, . . . , nμ + 1, j = 1, . . . , Ns . (21)

Each feature of the training parameter matrix is rescaled according to its maximum and
minimum values. Regarding instead the training snapshot matrix Strain ∈ R

Nh×Ns , we define

Smax = max
i=1,...,Nh

max
j=1,...,Ns

Straini j , Smin = min
i=1,...,Nh

min
j=1,...,Ns

Straini j (22)

and apply transformation (21) by replacing Mi
max , M

i
min with Smax , Smin ∈ R, respectively,

that is. we use the same maximum and minimum values for all the features of the snapshot
matrix, as in [37,40]. Using the latter approach or employing each feature’s maximum and
minimum values, for the matrix Strain , does not lead to remarkable changes in the DL-
ROM performance. Transformation (21) is applied also to the validation and testing sets, but
considering as maximum and minimum the values computed over the training set. In order to
rescale the reconstructed solution to the original values, we apply the inverse transformation
of (21).We point out that the input of the encoder function, the FOMsolutionuh = uh(tk;μi)

for a given (time, parameter) instance (tk,μi), is reshaped into amatrix. In particular, starting

from uh ∈ R
Nh , we apply the transformation uR

h =reshape(uh) where u
R
h ∈ R

N1/2
h ×N1/2

h . If
Nh �= 4m , m ∈ N, the input uh is zero-padded [25]. For the sake of simplicity, we continue
to refer to the reshaped FOM solution as to uh . The inverse reshaping transformation is
applied to the output of the last convolutional layer in the decoder function, yielding the
ROM approximation. Note that applying one of the functions (11, 12, 17) to a matrix means
applying it row-wise. The reduced dimension is chosen through hyperparameters tuning, i.e.
we start from n = nμ + 1 and select a different value of n only if it leads to a significant
increase of the performance of the neural network.

The training algorithm referring to the DL-ROM architecture of Fig. 3 is reported in
Algorithm 1. During the training phase, the optimal parameters of the DL-ROM neural
network are found by solving the optimization problem (18 and 19) through back-propagation

123

 61 Page 12 of 36 Journal of Scientific Computing (2021) 87:61

Algorithm 1 DL-ROM training

Input: Parameter matrix M ∈ R
(nμ+1)×Ns , snapshot matrix S ∈ R

Nh×Ns , training-validation splitting
fraction α, starting learning rate η, batch size Nb , maximum number of epochs Nepochs , early stopping
criterion, number of minibatches Nmb = (1 − α)Ns/Nb .

Output: Optimal model parameters θ∗ = (θ∗
E , θ∗

DF , θ∗
D).

1: Randomly shuffle M and S
2: Split data in M = [Mtrain , Mval] and S = [Strain , Sval] (Mval , Sval ∈ R

Nh×αNs)
3: Normalize data in M and S according to (20)-(21)-(22)
4: Randomly initialize θ0 = (θ0E , θ0DF , θ0D)

5: ne = 0
6: while (¬early-stopping and ne ≤ Nepochs) do
7: for k = 1 : Nmb do
8: Sample a minibatch (Mbatch , Sbatch) ⊆ (Mtrain , Strain)

9: Sbatch = reshape(Sbatch)

10: S̃batchn (θ
Nmbne+k
E) = fEn (Sbatch ; θ

Nmbne+k
E)

11: Sbatchn (θ
Nmbne+k
DF) = φDF

n (Mbatch ; θ
Nmbne+k
DF)

12: S̃batchh (θ
Nmbne+k
DF , θ

Nmbne+k
D) = fDh (Sbatchn (θ

Nmbne+k
DF); θ

Nmbne+k
D)

13: S̃batchh = reshape(S̃batchh)

14: Accumulate loss (19) on (Mbatch , Sbatch) and compute ∇̂θJ
15: θNmbne+k+1 = ADAM(η, ∇̂θJ , θNmbne+k)
16: end for
17: Repeat instructions 9-13 on (Mval , Sval) with the updated weights θNmbne+k+1

18: Accumulate loss (19) on (Mval , Sval) to evaluate early-stopping criterion
19: ne = ne + 1
20: end while

Algorithm 2 DL-ROM testing

Input: Testing parameter matrix Mtest ∈ R
(nμ+1)×(Ntest Nt), optimal model parameters (θ∗

DF , θ∗
D).

Output: ROM approximation matrix S̃h ∈ R
Nh×(Ntest Nt).

1: Load θ∗
DF and θ∗

D
2: Sn(θ∗

DF) = φDF
n (Mtest ; θ∗

DF)

3: S̃h(θ∗
DF , θ∗

D) = fDh (Sn(θ∗
DF); θ∗

D)

4: S̃h = reshape(S̃h)

and ADAM algorithms. At testing time, the encoder function is instead discarded (the DL-
ROM architecture is the one shown in Fig. 2) and the testing algorithm is provided by
Algorithm 2. The testing phase corresponds to a forward step of the DL-ROMneural network
in Fig. 2. We remark that with S̃n we refer to a matrix collecting column-wise the output of
the encoder function of the convolutional AE (17) applied to each column of the snapshot
matrix S. In the same way, the columns of Sn collect the intrinsic coordinates, output of the
DFNN (12), for each sample in the parameter matrix M , and S̃h is a matrix whose columns
are the ROM approximations, outputs of the decoder function of the convolutional AE (13),
associated to the columns of Sn .

We implement the neural networks required by the DL-ROM technique by means of
the Tensorflow DL framework [1]; numerical simulations are performed on a workstation
equipped with an Nvidia GeForce GTX 1070 8 GB GPU.

123

Journal of Scientific Computing (2021) 87:61 Page 13 of 36 61

4 Numerical Results

In this section, we report the numerical results obtained by applying the proposed DL-
ROM technique to three parametrized, time-dependent PDE problems, namely (1) Burgers
equation, (2) a linear transport equation, and (3) a coupled PDE-ODE system arising from
cardiac electrophysiology; this latter is a system of time dependent, nonlinear equations,
whose solutions feature a traveling wave behavior. We deal with problems set in d = 1, 2
(spatial) dimensions. In the one-dimensional test cases we aim at assessing the numerical
accuracy of the DL-ROM approximation, comparing it to the solution provided by a POD-
Galerkin ROM, which features linear (possibly, piecewise linear) trial manifolds. In the
two-dimensional test case we instead focus on computational efficiency, by comparing the
computational times of DL-ROM to the ones entailed by a POD-Galerkin method.

To evaluate the performance of DL-ROM we rely on the loss function (19) and on the
following error indicator

εrel = 1

Ntest

Ntest∑
i=1

⎛
⎝

√∑Nt
k=1 ||ukh(μtest,i) − ũkh(μtest,i)||2√∑Nt

k=1 ||ukh(μtest,i)||2

⎞
⎠ . (23)

4.1 Test 1: Burgers Equation

Let us consider the parametrized one-dimensional nonlinear Burgers equation⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂t
+ u

∂u

∂x
− 1

μ

∂2u

∂x2
= 0 (x, t) ∈ (0, L) × (0, T),

u(0, t) = 0 t ∈ (0, T),

u(L, t) = 0 t ∈ (0, T),

u(x, 0) = u0(x) x ∈ (0, L),

(24)

where
u0(x) = x

1 + √
1/A0 exp(μx2/4)

,

with A0 = exp(μ/8), L = 1 and T = 2. System (24) has been discretized in space by means
of linear finite elements, with Nh = 256 grid points, and in time by means of the Backward
Euler scheme, with Nt = 100 time instances. The parameter space, to which belongs the
single (nμ = 1) parameter, is given by P = [100, 1000]. We consider Ntrain = 20 training-
parameter instances uniformly distributed overP and Ntest = 19 testing-parameter instances,
each of them corresponding to the midpoint between two consecutive training-parameter
instances.

The configuration of the DL-ROM neural network used for this test case is the following.
We choose a 12-layer DFNN equipped with 50 neurons per hidden layer and n neurons in
the output layer, where n corresponds to the dimension of the reduced trial manifold. The
architectures of the encoder and decoder functions are instead reported in Tables 1 and 2,
and are similar to the ones used in [37]. The total number of parameters (i.e., weights and
biases) of the neural network is equal to 393051.

Problem (24) does not represent a remarkably challenging task for linearROMs, such as the
POD-Galerkin method. Indeed, by using the POD method on the snapshot matrix (the latter
built by collecting the solution of (24) for Ns = Ntrain Nt training-parameter instances), we
find that a linear trial manifold of dimension 20 is enough to capture more than the 99.99% of

123

 61 Page 14 of 36 Journal of Scientific Computing (2021) 87:61

Table 1 Test 1: Attributes of convolutional and dense layers in the encoder fEn

Layer Input Output Kernel #Of filters Stride Padding
Dimension Dimension Size

1 [16, 16, 1] [16, 16, 8] [5, 5] 8 1 SAME

2 [16, 16, 8] [8, 8, 16] [5, 5] 16 2 SAME

3 [8, 8, 16] [4, 4, 32] [5, 5] 32 2 SAME

4 [4, 4, 32] [2, 2, 64] [5, 5] 64 2 SAME

5 Nh 256

6 256 n

Table 2 Test 1: Attributes of dense and transposed convolutional layers in the decoder fDh

Layer Input Output Kernel #Of filters Stride Padding
dimension dimension size

1 n 256

2 256 Nh

3 [2, 2, 64] [4, 4, 64] [5, 5] 64 2 SAME

4 [4, 4, 64] [8, 8, 32] [5, 5] 32 2 SAME

5 [8, 8, 32] [16, 16, 16] [5, 5] 16 2 SAME

6 [16, 16, 16] [16, 16, 1] [5, 5] 1 1 SAME

the energyof the system [48,59]. In order to assess theDL-ROMperformance,we compute the
DL-ROM solution by fixing the dimension of the nonlinear trial manifold to n = 20. In Fig. 4
we compare the DL-ROM and the FOM solutions, with the optimal-POD reconstructions
as measured by the discrete 2-norm (that is, the projection of the FOM solution onto the
POD linear trial manifold of dimension 20 for t = 0.02 and the testing-parameter instance
μtest = 976.32).

The latter testing value has been selected as the instance ofμ for which the reconstruction
task results to be the most difficult both for POD and DL-ROM, being the diffusion term in
(24) smaller and the solution closer to the one of a purely hyperbolic system. In particular,
for μtest = 976.32, employing the DL-ROM technique allows us to halve the error indicator
εrel associated to the optimal-POD reconstruction. Referring to Fig. 4, the DL-ROM approx-
imation is more accurate than the optimal-POD reconstruction, indeed it mostly fits the FOM
solution, even in correspondence of its maximum, as shown in Fig. 4. The same comparison
of Fig. 4, but with a reduced dimension n = 10, is shown in Fig. 5, where the difference in
terms of accuracy is even more remarkable.

Finally, in Fig. 6 we highlight the accuracy properties of both the DL-ROM and POD
techniques by displaying the behavior of the error indicator εrel , defined in (23), with respect
to the dimension n of the corresponding reduced trial manifold. For n < 20 the DL-ROM
approximation is more accurate than the one provided by POD, and only for n = 20 the
two techniques provide almost the same accuracy. The lack of convergence of the DL-ROM
technique, with respect to n, is related to the almost unchanged capacity of the neural network.
In particular, by increasing the dimension n, for example, from 2 to 20, the total number of
parameters of the DL-ROM neural network varies from 393051 to 403203, that is we are
increasing the total number of weights and biases by almost the 2.5%, thus resulting in a

123

Journal of Scientific Computing (2021) 87:61 Page 15 of 36 61

Fig. 4 Test 1: FOM, optimal-POD and DL-ROM solutions for the testing-parameter instance μtest = 976.32
at t = 0.02, with n = 20

Fig. 5 Test 1: FOM, optimal-POD and DL-ROM solutions for the testing-parameter instance μtest = 976.32
at t = 0.02, with n = 10

slightly enhancement of the network capacity. Moreover, similar trends of suitable indicators
of the error between the FOM and the ROM approximation with respect to the reduced
dimension can also be observed in [11,29].

123

 61 Page 16 of 36 Journal of Scientific Computing (2021) 87:61

Fig. 6 Test 1: Error indicator εrel vs. n on the testing set

4.2 Test 2: Linear Transport equation

Test 2.1: n� = 1 Input Parameter

First, we consider the parametrized one-dimensional linear transport equation⎧⎨
⎩

∂u

∂t
+ μ

∂u

∂x
= 0 (x, t) ∈ R × (0, T),

u(x, 0) = u0(x) x ∈ R,
(25)

whose solution is u(x, t) = u0(x − μt); here u0(x) = (1/
√
2πσ)e−x2/2σ and T = 1.

Here the parameter represents the velocity of the traveling wave, varying in the parameter
space P = [0.775, 1.25]; we set σ = 10−4. The dataset is built by uniformly sampling the
exact solution in the domain (0, L) × (0, T), with L = 1, considering Nh = 256 degrees of
freedom in the space discretization and Nt = 200 time instances. We consider Ntrain = 20
training-parameter instances uniformly distributed over P and Ntest = 19 testing-parameter
instances such that μtest,i = (μtrain,i + μtrain,i+1)/2, for i = 1, . . . , Ntest . This test case,
and more in general hyperbolic problems, are examples in which the use of a linear approach
to ROM might yield a loss of accuracy. Indeed, the dimension of the linear trial manifold
must be very large, if compared to the dimension of the solution manifold, in order to capture
the variability of the FOM solution over the parameter space P .

Figure 7 shows the exact solution and the DL-ROM approximation for the testing-
parameter instanceμtest = 0.8625; here, we set the dimension of the nonlinear trial manifold
to n = 2, equal to the dimension nμ +1 of the solution manifold. Moreover, in Fig. 7 we also
report the relative error εk ∈ R

Nh , for k = 1, . . . , Nt , associated to the selected μtest ∈ P ,
defined as

εk = |ukh(μtest) − ũkh(μtest)|√
1
Nt

∑Nt
k=1 ||ukh(μtest)||2

, (26)

whose largest values are found in proximity of the largest variations of the solution.

123

Journal of Scientific Computing (2021) 87:61 Page 17 of 36 61

Fig. 7 Test 2.1: Exact solution (left), DL-ROM solution with n = 2 (center) and relative error εk (right) for
the testing-parameter instance μtest = 0.8625 in the space-time domain

Fig. 8 Test 2.1: Exact solution, DL-ROM approximation and optimal-POD reconstruction for the testing-
parameter instance μtest = 0.8625 at t = 0.125, 0.5 and 0.625

In Fig. 8 we report the exact solution and the DL-ROM approximation with n = 2,
at three particular time instances. To compare the performance of DL-ROM with a linear
ROM, we performed POD on the snapshot matrix and report, for the same testing-parameter
instance, the optimal-POD reconstruction as measured by the 2-norm (that is, the projection
of the exact solution onto the POD linear trial manifold). Still with n = 50 POD modes,
the optimal-POD reconstruction is affected by spurious oscillations. On the other hand, the
DL-ROM approximation with n = 2 yields an error indicator εrel = 8.74×10−3; to achieve
the same accuracy obtained through DL-ROM over the testing set, a linear trial manifold
should have dimension n = 90.

Figure 9 shows the behavior of the error indicator (23) with respect to the reduced
dimension n. By increasing the dimension n of the nonlinear trial manifold there is a mild
improvement of the DL-ROM performance, i.e. the error indicator slightly decreases; how-
ever, such an improvement is not significant, in general: in this range of n, indeed, the number
of parameters of the DL-ROM neural network slightly increases, thus implying almost the
same approximation capability.

123

 61 Page 18 of 36 Journal of Scientific Computing (2021) 87:61

Fig. 9 Test 2.1: Error indicator εrel vs. n on the testing set

Table 3 Test 2.1: Starting
configuration of DL-ROM

Kernel size #Hidden layers #Neurons

[3, 3] 1 50

Fig. 10 Test 2.1: Impact of the kernel size (left), the number of hidden layers (center) and the number of
neurons (right) on the validation and testing loss

Remark 2 (Hyperparameters tuning). The hyperparameters of the DL-ROM neural network
are tuned by evaluating the loss function over the validation set and by setting each of them
equal to the value minimizing the generalization error on the validation set. In particular,
we show the tests performed to choose the size of the (transposed) convolutional kernels in
the (decoder) encoder function, the number of hidden layers in the DFNN and the number
of neurons for each hidden layer. The hyperparameters evaluation starts from the default
configuration in Table 3.

Then, the best values are found iteratively by inspecting the impact of the variation of a
single hyperparameter at a time on the validation loss. Once the best value of each hyperpa-
rameter is found, it replaces the default value from that point on. For each hyperparameter
the tuning is performed in a range of values for which the training of the network is compu-
tationally affordable.

In Fig. 10, we show the impact of the size of the convolutional kernels on the loss over
the validation and testing sets, the number of hidden layers in the DFNN and the number of

123

Journal of Scientific Computing (2021) 87:61 Page 19 of 36 61

Table 4 Test 2.1: Final
Configuration of DL-ROM

Kernel size #Hidden layers #Neurons

[7, 7] 4 200

Fig. 11 Test 2.2: Exact solution (left), DL-ROM solution with n = 3 (center) and relative error εk (right) for
the testing-parameter instance μtest = (0.154375, 0.6375) in the space-time domain

neurons in each hidden layer by varying the reduced dimension in order to find the best value
of such hyperparameter over n. The final configuration of the DL-ROM neural network is
the one provided in Table 4.

Test 2.2: n� = 2 Input Parameters

Here we consider again the parametrized one-dimensional transport equation (25), whose
exact solution is u(x, t) = u0(x − t;μ); however, we now take

u0(x;μ) =
{
0 if x < μ1,

μ2 if x ≥ μ1,
(27)

as initial datum,whereμ = [μ1, μ2]T . The nμ = 2 parameters belong to the parameter space
P = Pμ1 ×Pμ2 = [0.025, 0.25] × [0.5, 1]. We build the dataset by uniformly sampling the
exact solution in the domain (0, L) × (0, T), with L = 1 and T = 1, and by considering
Nh = 256 grid points for the space discretization and Nt = 100 time instances. We collect,
both for μ1 and μ2, Ntrain = 21 training-parameter instances uniformly distributed in the
parameter space P and Ntest = 20 testing-parameter instances, selected as in the other test
cases. Equation (25), completed with the initial datum (27), represents a challenging test bed
for linear ROMs because of the difficulty to accurately reconstruct the jump discontinuity of
the exact solution as a linear combination of basis functions computed from the snapshots,
for a testing-parameter instance. The architecture of the DL-ROM neural network used here
is the one presented in the Test 2.1.

In Fig. 11 we show the exact solution and the DL-ROM approximation obtained by setting
n = 3 (thus equal to nμ + 1) for the testing-parameter instance μtest = (0.154375, 0.6375),
along with the relative error εk , defined in (26). Also in this case, the relative error is larger
close to the solution discontinuity.

123

 61 Page 20 of 36 Journal of Scientific Computing (2021) 87:61

Fig. 12 Test 2.2: Exact, DL-ROM and optimal-POD solutions for the testing-parameter instance μtest =
(0.154375, 0.6375) at t = 0.245, 0.495 and 0.745

In Fig. 12 we report the DL-ROM approximation, the optimal-POD reconstruction, as
measured in the 2-norm, and the exact solution, for the time instances t = 0.245, 0.495 and
0.745, and the testing-parameter instance μtest = (0.154375, 0.6375). The dimension of
the reduced manifolds are n = 3 and n = 50 for the DL-ROM and the POD techniques,
respectively. Also in this case, even by setting the dimension of the linear manifold equal
to n = 50, the reconstructed solution presents spurious oscillations. Moreover, the optimal-
POD reconstruction is not able to fit the discontinuity of the exact solution in a sharp way.
These oscillations are significantly mitigated by the use of our DL-ROM technique, which
is able to fit the jump discontinuity accurately, as shown in Fig. 12.

Finally, we remark how the relative error with respect to the reduced dimension n behaves
as in the previous test case (see Fig. 13). TheDL-ROMapproximation yields an error indicator
εrel = 2.85× 10−2 with n = 3; a similar accuracy would be achieved by POD only through
a linear trial manifold of dimension n = 165.

4.3 Test 3: Monodomain Equation

Test 3.1: d = 1 Spatial Dimension

We now consider a one-dimensional coupled PDE-ODE nonlinear system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
∂u

∂t
− μ2 ∂2u

∂x2
+ u(u − 0.1)(u − 1) + w = 0 (x, t) ∈ (0, L) × (0, T),

dw

dt
+ (γw − βu) = 0 (x, t) ∈ (0, L) × (0, T),

∂u

∂x
(0, t) = 50000t3e−15t t ∈ (0, T),

∂u

∂x
(L, t) = 0 t ∈ (0, T),

u(x, 0) = 0 w(x, 0) = 0 x ∈ (0, L),

(28)

where L = 1,T = 2,γ = 2 andβ = 0.5; the parameterμbelongs to the parameter spaceP =
5 · [10−3, 10−2]. This system consists in a parametrized version of theMonodomain equation
coupled with the FitzHugh-Nagumo cellular model, describing the excitation-relaxation of

123

Journal of Scientific Computing (2021) 87:61 Page 21 of 36 61

Fig. 13 Test 2.2: Error indicator εrel vs. n on the testing set

Fig. 14 Test 3.1: FOM solutions for different testing-parameter instances

the cell membrane in the cardiac tissue [21,42]. In such a model, the ionic current is a cubic
function of the electrical potential u and linear in the recovery variable w. System (28) has
been discretized in space through linear finite elements, by considering Nh = 256 grid points
and using a one-step, semi-implicit, first order scheme for time discretization; see, e.g., [45]1.
The solution of the former problem consists in a μ-dependent traveling wave, which exhibits
sharper and sharper fronts as μ gets smaller (see Fig. 14).

We consider Ntrain = 20 training-parameter instances uniformly distributed in the param-
eter space P and Ntest = 19 testing-parameter instances, each of them corresponding to the
midpoint between two consecutive training parameter instances. Figure 15 shows the FOM
solution and the DL-ROM one obtained by setting n = 2, the dimension of the solution
manifold, for the testing-parameter instance μtest = 0.0062. We also report in Fig. 15 the
relative error εk (26), which takes larger values close to the points where the FOM solution

1 The Matlab library used to compute snapshots and to implement the (local) POD-Galerkin method for
problem (28) is available at https://github.com/StefanoPagani/LocalROM

123

 61 Page 22 of 36 Journal of Scientific Computing (2021) 87:61

Fig. 15 Test 3.1: FOM solution (left), DL-ROM solution with n = 2 (center) and relative error εk (right) for
the testing-parameter instance μtest = 0.0062 in the space-time domain

Table 5 Test 3: Maximum
number of basis functions for the
POD-Galerkin ROM

Nc = 1 Nc = 2 Nc = 4 Nc = 8 Nc = 16 Nc = 32

66 68 55 34 26 20

shows steeper gradients. The accuracy obtained by our DL-ROM technique with n = 2, and
measured by the error indicator on the testing set, is εrel = 3.42 × 10−3.

In order to assess the performance of the DL-ROM against a linear ROM, we consider
a POD-Galerkin ROM exploiting local reduced bases; these latter are obtained by applying
POD to a set of clusters which partition the original snapshot set. In particular, we employ
the k-means clustering algorithm [38], an unsupervised statistical learning technique for
finding clusters and cluster centers in an unlabeled dataset, to partition into Nc clusters the
snapshots, i.e. the columns of S, such that those within each cluster are more closely related
to one another than elements assigned to different clusters. In Table 5 we report the maximum
number of basis functions among all the clusters, i.e. the dimension of the largest linear trial
manifold, required by the (local) POD-Galerkin ROM, in order to achieve the same accuracy
obtained through a DL-ROM. By increasing the number Nc of clusters, the dimension of the
largest linear trial subspace decreases; this does not hold as long as the number of clusters is
larger than Nc = 32. Indeed, the dimension of some linear subspaces become so small that
the error might increase compared to the one obtained with fewer clusters.

In particular, in Figs. 16 and 17 the POD-Galerkin ROM approximations obtained by
considering n = 2 and n = 66 basis functions, and Nc = 16 and Nc = 32, where the
largest local linear trial manifold dimension is reported in Table 5, are shown. In Fig. 18 we
compare the FOM solution for μtest = 0.0157 at t = 0.4962, 0.9975 and 1.4987, with the
DL-ROM approximation obtained for n = 2, and the POD-Galerkin approximation with a
global (Nc = 1) linear trial manifold, of dimension n = 2, 20 and 66, respectively.

The convergence of the error indicator (23) as a function of the reduced dimension n is
shown in Fig. 19. For the (local) POD-Galerkin ROM, by increasing the dimension of the
largest linear trial manifold, the error indicator decreases; this also occurs for the DL-ROM
technique for n ≤ 20, although the error decay in this latter case is almost negligible, for
the same reason pointed out in Test 2.1. By considering larger values of n, e.g. n = 40,
overfitting might then occur, meaning that the neural network model is too complex with

123

Journal of Scientific Computing (2021) 87:61 Page 23 of 36 61

Fig. 16 Test 3.1: POD-Galerkin ROM solutions for the testing parameter instance μtest = 0.0062 with n = 2
(left) and n = 66 (right) in the space-time domain

Fig. 17 Test 3.1: POD-Galerkin ROM solutions for the testing parameter instance μtest = 0.0062 with
Nc = 16 (left) and Nc = 32 (right) in the space-time domain

Fig. 18 Test 3.1: FOM and DL-ROM solutions (left) and FOM and POD-Galerkin ROM solutions (right) for
the testing-parameter instance μtest = 0.0157 at t = 0.4962, 0.9975 and 1.4987

123

 61 Page 24 of 36 Journal of Scientific Computing (2021) 87:61

Fig. 19 Test 3.1: Error indicator εrel vs. n on the testing set

Fig. 20 Test 3.1: Loss and error indicator εrel on the testing set vs. number of training-parameter instances of
the parameter μ

respect to the amount of data provided to it during the training phase. This might explain the
slight increase of the error indicator εrel for n = 40.

Finally, in Fig. 20 we report the behavior of the loss function and of the error indicator
εrel with respect to the number of training-parameter instances, i.e. the size of the training
dataset. By providingmore data to the DL-ROMneural network, its approximation capability
increases, thus yielding a decrease in the generalization error and the error indicator. In
particular, the loss decay with respect to the number of training-parameter instances Ntrain is
of about order 1/N 3

train , while the decay of the error indicator (23) is of about order 1/N
2
train .

123

Journal of Scientific Computing (2021) 87:61 Page 25 of 36 61

Fig. 21 Test 3.1: Impact of the kernel size (left), the number of hidden layers (center) and the number of
neurons (right) on the validation and testing loss

Table 6 Test 3.1: Final
configuration of DL-ROM

Kernel size #Hidden layers #Neurons

[7, 7] 1 200

Remark 3 (Hyperparameters tuning). In order to perform hyperparameters tuning we follow
the same procedure used for Test 2.1. We start from the default configuration and we tune the
size of the (transposed) convolutional kernels in the (decoder) encoder function, the number
of hidden layers in the feedforward neural network and the number of neurons for each hidden
layer. In Fig. 21 we show the impact of the hyperparameters on the validation and testing
losses. The final configuration of the DL-ROM neural network is the one provided in Table 6.

Remark 4 (Sensitivity with respect to the weight ωh). For all the test cases, we set the param-
eter ωh in the loss function (19) equal to ωh = 1/2. To justify this choice, we performed
a sensitivity analysis for problem (28) as shown in Fig. 22. For extreme values of ωh , the
error indicator (23) worsens of about one order of magnitude. In particular, the case ωh = 1
(that is, not considering the contribution of the encoder function fEn in the loss) yields worse
DL-ROM performance; similarly, the case ωh = 0 would neglect the reconstruction error
(that is, the first term in the per-example loss function (19)) – this is why the error indicator
is large for ωh = 0.1. All the values of ωh in the range [0.2, 0.9] do not yield significant
differences in terms of error indicator, so we decided to set ωh = 1/2.

Test 3.2: d = 2 Spatial Dimensions

We now consider a two-dimensional coupled PDE-ODE nonlinear system, in which the
Monodomain equation is coupled to the Aliev-Panfilov ionic model [3],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− div(D(μ)∇u)+
Ku(u − a)(u − 1) + uw = Iapp(x, t) (x, t) ∈ Ω × (0, T),

∂w

∂t
+

(
ε0 + c1w

c2 + u

)
(−w − Ku(u − b − 1)) = 0 (x, t) ∈ Ω × (0, T),

∇u · n = 0 (x, t) ∈ ∂Ω × (0, T),

u(x, 0) = 0, w(x, 0) = 0 x ∈ Ω.

(29)

Here, we consider a square domainΩ = (0, 10) cm and two (nμ = 2) parameters, consisting
in the electric conductivities in the longitudinal and the transversal directions to the fibers,

123

 61 Page 26 of 36 Journal of Scientific Computing (2021) 87:61

Fig. 22 Test 3.1: Error indicator εrel vs. ωh

i.e., the conductivity tensor D(x;μ) takes the form

D(x;μ) = μ2 I + (μ1 − μ2)f0(x) ⊗ f0(x), (30)

where f0 = (1, 0)T and the parameters space is P = 12.9 · [0.02, 0.2] × 12.9 ·
[0.01, 0.1]cm2/ms. The applied current is defined as

Iapp(x, t) = C

2πα
exp

(
− ||x||2

2β

)
1[0,t](t),

where C = 100 mA, α = 1, β = 1 cm2 and t = 2 ms. The parameters of the Aliev-Panfilov
ionic model are set to K = 8, a = 0.01, b = 0.15, ε0 = 0.002, c1 = 0.2, and c2 = 0.3,
see, e.g., [24]. The equations have been discretized in space through linear finite elements by
considering Nh = 4096 grid points. For the time discretization and the treatment of nonlinear
terms, we use a one-step, semi-implicit, first order scheme (see [45] for further details) by
considering a time step �t = 0.1 ms over the interval (0, T), with T = 400 ms.

For the training phase, we uniformly sample Nt = 1000 time instances in the interval
(0, T) and consider Ntrain = 25 training-parameter, i.e.μtrain = 12.9·(0.02+i0.045, 0.01+
j0.0225) with i, j = 0, . . . , 4. For the testing phase, Ntest = 16 testing-parameter instances
have been considered, each of them given by μtest = 12.9 · (0.0425 + i0.045, 0.0212 +
j0.0225) with i, j = 0, . . . , 3. The maximum number of epochs is Nepochs = 10000, the
batch size is Nb = 40 and, regarding the early-stopping criterion, we stop the training if the
loss function does not decrease along 500 epochs.

In Fig. 23 we show the FOM and the DL-ROM solutions, the latter obtained with n = 3,
for the testing-parameter instances μtest = 12.9 · (0.088, 0.066) cm2/ms and μtest = 12.9 ·
(0.178, 0.066) cm2/ms, respectively, at t = 47.7 ms, together with the relative error εk . We
remark the variability of the solution of (29) over P , characterized by the propagation of a
sharp front across the domain, depending on the parameter values.

123

Journal of Scientific Computing (2021) 87:61 Page 27 of 36 61

Fig. 23 Test 3.2: FOM solution (left), DL-ROMsolutionwith n = 3 (center) and relative error εk (right) for the
testing-parameter instances μtest = 12.9 · (0.088, 0.066) cm2/ms (above) and μtest = 12.9 · (0.178, 0.066)
cm2/ms (bottom) at t = 47.4 ms

Table 7 Test 3.2: FOM, POD-Galerkin ROMandDL-ROMcomputational times alongwith FOM and reduced
trial manifold(s) dimensions

Time [s] FOM/ROM dimensions

FOM 243 Nh = 4096

DL-ROM 0.45 (1.8) n = 3

POD-Galerkin ROM (Nc = 1) 14 n = 87

POD-Galerkin ROM (Nc = 2) 11 n = 58, 49

POD-Galerkin ROM (Nc = 4) 9 n = 44, 33, 31, 29

POD-Galerkin ROM (Nc = 6) 8 n = 38, 33, 27, 26, 21, 6

POD-Galerkin ROM (Nc = 8) 8 n = 30, 25, 24, 22, 21, 20, 19, 6

Finally,we focus on the performance of ourDL-ROMtechnique, in terms of computational
efficiency. In Table 7 we compare the computational times2 required to compute the solution
for a randomly sampled testing-parameter instance, over the entire time interval (0, T), by
the FOM, the (local) POD-Galerkin ROM (for different values of Nc) and the DL-ROM,
keeping for the three models the same degree of accuracy achieved by DL-ROM, i.e. εrel =
5.87 × 10−3.

We emphasize that the DL-ROM solution can be queried at any desired time instance
t̄ ∈ [0, T], without involving the solution of a dynamic system to determine its evolution up
to t̄ , unlike the FOM or the POD-Galerkin ROM. This latter still requires solving for whole
range of discrete times in the interval [0, t̄], with time-step size �t dependent on the desired
level of accuracy. In other words, when using the DL-ROMwe are free to choose a larger time
resolution, to reach the same degree of accuracy, with respect to the time stepping required

2 Here we performed our simulations on a full 64 GB node (20 Intel® Xeon® E5-2640 v4 2.4GHz cores) of
the HPC cluster available at MOX, Politecnico di Milano.

123

 61 Page 28 of 36 Journal of Scientific Computing (2021) 87:61

Fig. 24 Test 3.2: FOM andDL-ROM solutions for the testing-parameter instanceμtest = 12.9·(0.088, 0.066)
cm2/ms at P1 and P2 (left). FOM, (local) POD-Galerkin ROM and DL-ROM computational times to compute
ũh(t̄) vs. t̄ averaged over the testing set (right)

in the solution of the POD-Galerkin ROM dynamical system. Indeed, the underlying nature
of the FOM in the test case at hand implies very small time step sizes when both solving the
POD-Galerkin ROM and sampling the FOM solution for the snapshot matrix assembling.
This feature allows to drastically reduce the testing computational time of DL-ROM with
respect to the ones required to compute the FOM or the POD-Galerkin ROM solutions at a
given time.

The speed up introduced by the DL-ROM technique with respect to the FOM is about 138
times, provided that we evaluate the solution at Nt = 4000 time steps as in the FOM; the
speedup increases to 536 times if the DL-ROM approximation is computed instead, ensuring
the same degree of accuracy, at Nt = 1000 time steps. Compared to the use of the local
POD-Galerkin ROM in the best case (i.e., with Nc = 6 or 8 local bases) leads to almost 30
times faster computations.

The computational gain is even more remarkable regarding the evaluation of the solution
at the final time t̄ = T : theDL-ROMdirectly provides it, as t̄ is an input of the neural network,
whereas a POD-GalerkinROMstill require solving for hundreds or thousands of discrete time
instances. In Fig. 24 (right) we show the DL-ROM, FOM and POD-Galerkin ROMCPU time
needed to compute the approximated solution at t̄ , for t̄ = 1, 10, 100 and 400ms averaged over
the testing set. We perform the training phase of the POD-Galerkin ROM over the original
time interval (0, T)ms andwe report the results for Nc = 8 local bases, forwhich the smallest
computational time is obtained in Table 7. The DL-ROM CPU time to compute ũh(t̄) does
not vary over t̄ and by choosing t̄ = T ms the DL-ROM speed ups are equal to 7.1×104 and
2.4 × 103 with respect to the FOM and the POD-Galerkin ROM with Nc = 8 local bases3.
In Fig. 24 (left) we also show the comparison between the FOM solution and the DL-ROM
approximation (with n = 3) computed at P1 = (9.52, 4.76) cm and P2 = (1.9, 1.11) cm,
for the testing-parameter instance μtest = 12.9 · (0.132, 0.066) cm2/ms. The time evolution
of the FOM solution is sharply captured by our DL-ROM technique at both locations.

Last but not least, the weaker constraint on time stepping used in the DL-ROM also has a
positive impact on the size of the dataset used for its training phase. For the case at hand, (i)
we can train the DL-ROM on a snapshot matrix containing only 25% of the snapshots used

3 We did not investigate the case Nc > 8 due to the fact that the employing Nc = 6 or Nc = 8 clusters lead
to the same testing computational time.

123

Journal of Scientific Computing (2021) 87:61 Page 29 of 36 61

Fig. 25 Test 3.2: FOM solution (left), DL-ROM solution with n = 3 (center) and relative error εk (right) for
the testing-parameter instance μtest = 12.9 · (0.088, 0.066) cm2/ms at t = 47.4 ms on an unstructured mesh.
The mesh elements have been highlighted

to train the POD-Galerkin ROM – taking Nt = 1000 instead of 4000 as in the POD-Galerkin
case.

Remark 5 (Unstructured mesh). The FOM solution needs to be reshaped before entering the
encoder function. However, the fact that neighboring cells do not always have close cell
indices on unstructured meshes does not affect the DL-ROM performance. To show this fact,
we consider the previous test case on an unstructured mesh featuring Nh = 3964 degrees
of freedom. In order to recover a FOM dimension Nh = 4m , m ∈ N, we zero-padded the
snapshot matrix. In Fig. 25 we show the FOM and the DL-ROM solutions, the latter obtained
with n = 3, for the testing-parameter instance μtest = 12.9 · (0.088, 0.066) cm2/ms at
t = 47.7 ms, and the relative error εk . Note that larger errors no longer occur at locations
where the solution exhibits larger gradients. Moreover, almost the same number of epochs is
required on unstructured and structured meshes, and the same accuracy is reached – for the
case of Fig. 25, the error indicator is εrel = 4.84 × 10−3.

5 Conclusions

In this work we proposed a novel technique to build low-dimensional ROMs by exploiting
DL algorithms to overcome typical computational bottlenecks shown by classical, linear
projection-based ROM techniques when dealing with problems featuring coherent structures
propagating over time. Our DL-ROM technique allows approximating both the solutionman-
ifold of a given parametrized nonlinear, time-dependent PDE bymeans of a low-dimensional,
nonlinear trial manifold, and the nonlinear dynamics of the generalized coordinates on such
reduced trial manifold, as a function of the time coordinate and the parameters. Both (1) the
nonlinear trial manifold and (2) the reduced dynamics are learnt in a non-intrusive way; the
former is learnt by means of the decoder function of a convolutional AE neural network,
whereas the latter through a DFNN, and the encoder function of the convolutional AE. The
numerical results obtained for three different test cases show that DL-ROMs provide suffi-
ciently accurate solutions to the parametrized PDEs involving a low-dimensional solution
manifold whose dimension is equal to (or slightly larger than) the solution manifold nμ + 1.
The proposedDL-ROMoutperforms linear ROMs such as theRBmethod (relying on a global
POD basis), as well as nonlinear approaches exploiting local POD bases, when applied both
to (1) problems which are challenging for linear ROMs, such as the linear transport equation
or nonlinear diffusion-reaction PDEs coupled to ODEs, and (2) problems which are more

123

 61 Page 30 of 36 Journal of Scientific Computing (2021) 87:61

tractable using a linear ROM, like Burgers equation, however featuring PODbases withmuch
higher dimension.

Regarding numerical accuracy, DL-ROMs provide approximations that are orders of
magnitude more accurate than the ones provided by linear ROMs, when keeping the same
dimension. Error decrease is moderate when considering low-dimensional spaces of increas-
ing dimensions, thus making, in the numerical tests considered, the accuracy of both
approximations comparablewhen dealingwithO(102)PODbasis functions. Regarding com-
putational efficiency, we have numerically assessed the computational speed up provided by
DL-ROMs compared to POD-Galerkin ROMs with local bases, obtaining a remarkable com-
putational gain when dealing with a parametrized coupled nonlinear PDE-ODE system on
a two-dimensional domain. This is motivated by the fact that DL-ROMs allow us to build
an approximated manifold by keeping its dimension extremely small and the use of a larger
time resolution than the POD-Galerkin ROM, thus decreasing the size of the training snap-
shot matrix and discarding solutions whose variation in time is not significant for preserving
the same degree of accuracy. Moreover, DL-ROMs are also able to directly approximate the
solution at any given time instance, without computing the whole dynamics until that time, as
it occurs instead with POD-Galerkin ROMs. In addition, compared to these latter, DL-ROMs
completely avoids the use of (very often, expensive) hyper-reduction techniques.

Numerical results show that DL-ROMs allow us to generate approximation spaces of
dimension close to the intrinsic dimension of the solution manifold, by providing remarkable
improvements in terms of computational efficiencywhen dealingwith parametrized nonlinear
time-dependent PDEs defined in d ≥ 2 dimensional domains, yet at the same degree of
accuracy. This is a fundamental step toward the application of DL-ROMs to nonlinear PDEs
whose high-fidelity discretization involves a larger number Nh of degrees of freedom, a task
that represents the object of our ongoing research activities.

Acknowledgements We gratefully acknowledge Prof. A. Quarteroni (MOX, Politecnico di Milano) for his
valuable comments, Dr. S. Pagani and M. Salvador (MOX, Politecnico di Milano) for their useful remarks.

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

Data Availibility The code used in this work is available at: https://github.com/stefaniafresca/DL-ROM-Meth.
The training and testing datasets will be made available upon request to the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Basic Concepts of Deep Learning

Deep learning (DL) techniques have gained great attention in recent years in several areas like
computer vision [7,34], natural language processing [19,60] and speech recognition [13,17],
due to their ability to discover pattern and extract features from massive datasets, in order
to make predictions without providing hand-crafted features. In this section we provide an
overview of those deep-learning models which the proposed DL-ROM technique relies on.

123

https://github.com/stefaniafresca/DL-ROM-Meth
http://creativecommons.org/licenses/by/4.0/

Journal of Scientific Computing (2021) 87:61 Page 31 of 36 61

Fig. 26 Feedforward neural network

A.1 Deep Feedforward Neural Network

A remarkable example of DL model is the deep feedforward neural network (DFNN). A
DFNN is a mathematical function modeling the relationship between a set of input values
and some output values [25]. This mathematical function is obtained through composition of
simpler (nonlinear) functions, or layers, and allows to learn complex hierarchies of features.
More formally, provided an input x ∈ R

N0 a DFNN with L layers takes the form

φDF : (x; θDF) �→ φL(·; θ L) ◦ φL−1(·; θ L−1) ◦ . . . ◦ φ1(x; θ1), (31)

where φi (·; θ i) : RNi−1 �→ R
Ni , i = 1, . . . , L , refers to the activation function applied at

layer i of the DFNN and θ i = (Wi ,bi), with Wi ∈ R
Ni×Ni−1 and bi ∈ R

Ni , i = 1, . . . , L ,
are the weights and the bias of layer i such that θDF = (θ1, . . . , θ L). We usually refer to the
collection of all weights and biases as to the parameters vector. Each layer of the network
corresponds to amatrix whose values are computed by applying a linear transformation to the
previous layer followed by the application of a nonlinear activation function. In particular,
referring to Fig. 26, y0 = x ∈ R

N0 is the input layer, yL = φDF (x; θDF) ∈ R
NL is the

output layer, and each hidden layer yi ∈ R
Ni , i = 1, . . . , L − 1, takes the form

yi = φi (Wiyi−1 + bi).

Given a set of M input-output pair observations {(xi , yi)}Mi=1 and considering a supervised
learning paradigm [25], the learning task consists in finding the optimal parameters vector
θ∗
DF by solving the optimization problem

min
θDF

J (θDF) = min
θDF

1

M

M∑
i=1

L(yi , yiL ; θDF) (32)

where J is the loss (or cost) function, and L is the per-example loss function, measuring the
mismatch between the desired observed output yi and the approximated one yiL . Problem (32)
is usually solved by means of the gradient descent method exploiting the back-propagation
algorithm [58] to compute the derivatives of the loss function with respect to parameters. In
particular, the gradient descent method requires to evaluate

∇θDFJ (θDF) = 1

M

M∑
i=1

∇θDFL(yi , yiL ; θDF), (33)

123

 61 Page 32 of 36 Journal of Scientific Computing (2021) 87:61

Fig. 27 Computation of the elements of a feature map in a convolutional layer

a task which might easily become prohibitive when the size M of the training dataset is very
large, thus causing a single step of the gradient descent method to require a huge amount of
time. The stochastic gradient descent (SGD) method allows to reduce the computational cost
associated to the computation of the gradient of the loss function, by exploiting the fact that
(33) can be considered as an expectation over the entire training dataset. Such an expectation
can be approximated using a small set (or minibatch) of samples; hence, at each iteration the
SGD method samples a minibatch of m < M data points, drawn (e.g., uniformly) from the
training dataset [25], and approximates the gradient (33) of the loss function by

∇̂θDFJ (θDF) = 1

m

m∑
i=1

∇θDFL(yi , yiL ; θDF).

A.2 Convolutional Neural Network

Convolutional neural networks (CNNs) [36] are the standard neural network architecture in
computer vision tasks, since they arewell-suited to high-dimensional and spatially distributed
data like images. This is due to the local approach of convolutional layers which enables them
to exploit spatial correlations among pixels in order to extract low-level features of the input
to carry out the task. The main ingredients of a convolutional layer are convolutional kernels,
or filters, which consist in tensors of smaller dimensions with respect to the input. Each
element of a feature map is obtained by sliding the kernel over the image and by computing
the discrete convolution, as shown in Fig. 27.

Considering a 3-dimensional input Y0 = X ∈ R
N1
0×N2

0×N3
0 and a bank of Ki convolutional

filters in layer i denoted as Wk
i ∈ R

n1i ×n2i ×n3i , i = 1, . . . , L and k = 1, . . . , Ki , the k-th
feature map is computed as

Y k
i = φi (W

k
i ∗ Yi−1 + bki).

where Yi ∈ R
N1
i ×N2

i ×N3
i (or, equivalently, Y k

i ∈ R
N1
i ×N2

i) with N 1
i and N 2

i depending on n1i
and n2i , respectively, the padding and the striding strategies, and N 3

i = Ki .
Convolutional layers are characterized by shared parameters, that is, weights are shared

by all the elements (neurons) in a particular feature map, and local connectivity, that is,
each neuron in a feature map is connected only to a local region of the input. Parameter
sharing allows convolutional layers to enjoy another property: translation invariance or, more
precisely, translation equivariance. This means that if the input varies, the output changes
accordingly [25]. In particular, if we apply a transformation to the input Y0 and then compute

123

Journal of Scientific Computing (2021) 87:61 Page 33 of 36 61

Fig. 28 Autoencoder neural
network

the convolution, the result is the same we would obtain by computing the convolution and
then applying the transformation to the output. The two properties above increase efficiency
of CNNs, both in terms of memory and computational costs, with respect to DFNNs, thus
making them preferable to the latter when dealing with extremely high-dimensional data.

A.3 Autoencoder Neural Network

Autoencoders (AEs) [12,30] are a particular type of feedforward neural networks aiming at
learning, under suitable constraints, the identity function

f AE (·; θ E , θD) : xh �→ x̃h with x̃h � xh . (34)

Internally, an autoencoder has a hidden layer consisting in a code used to represent the input.
We focus on undercomplete autoencoders [25] where the constraint imposed is the reduction
of the dimension of the code with respect to the input and output dimension.

By considering the input y0 = xh ∈ R
Nh and the output yL = x̃h ∈ R

Nh , an autoencoder
is composed by two main parts (see Fig. 28)

– The encoder function fEn (·; θ E) : xh �→ x̃n = fEn (xh; θ E), where fEn (·; θ E) : RNh → R
n

and n � Nh , mapping the high-dimensional input xh onto the low-dimensional code x̃n .
The encoder function depends on a vector of parameters θ E ∈ R

NE collecting all the
weights and biases specifying the function itself;

– The decoder function fDh (·; θD) : x̃n �→ x̃h = fDh (x̃n; θD), where fDh (·; θD) : Rn →
R

Nh , mapping the code x̃n to an approximation of the original high-dimensional input x̃h .
Similarly to the encoder function, the decoder function depends on a vector of parameters
θD ∈ R

ND collecting all the weights and biases specifying the function itself.

The autoencoder is then defined as

f AE (·; θ E , θD) : xh �→ x̃h = fDh (fEn (xh; θ E); θD).

Autoencoder learning layswithin the unsupervised learning paradigm [25] since its goal is
to reconstruct the input being the target output an approximation of the input. An autoencoder
not only learns a low-dimensional representation of the high-dimensional input but also learns
how to reconstruct the input from the code through the encoder and the decoder functions.

When dealing with large inputs, as the ones arising from the discretization of system (1),
the use of a feedforward autoencoder may become prohibitive as the number of parameters

123

 61 Page 34 of 36 Journal of Scientific Computing (2021) 87:61

(weights and biases) requiredmay be very large. As pointed out in A.2, parameter sharing and
local connectivity allow to reduce the numbers of parameters of the network and the number
of associated computations, both in the forward and in the backward pass, hence the idea of
relying on convolutional autoencoders for the sake of building our DL-ROM technique.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan,
V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: A system for large-scale machine learning pp.
265–283 (2016). https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

2. Abgrall, R., Amsallem, D., Crisovan, R.: Robust model reduction by l1-norm minimization and approx-
imation via dictionaries: application to nonlinear hyperbolic problems. Adv. Model. Simul. Eng. Sci.
(2016). https://doi.org/10.1186/s40323-015-0055-3

3. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Fractals
7(3), 293–301 (1996)

4. Amsallem, D., Haasdonk, B.: PEBL-ROM: Projection-error based local reduced-order models. Adv.
Model. Simul. Eng. Sci. 3(1), 6 (2016)

5. Amsallem, D., Zahr, M.J., Farhat, C.: Nonlinear model order reduction based on local reduced-order
bases. Int. J. Numer. Methods Eng. 92(10), 891–916 (2012)

6. Amsallem, D., Zahr, M.J., Washabaugh, K.: Fast local reduced basis updates for the efficient reduction
of nonlinear systems with hyper-reduction. Adv. Comput. Math. 41(5), 1187–1230 (2015)

7. Antipov, G., Baccouche, M., Dugelay, J.: Face aging with conditional generative adversarial networks.
Presented at the (2017)

8. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: Application
to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathématique
de l’Académie des Sciences 339(9), 667–672 (2004)

9. Benner, P., Cohen, A., Ohlberger, M., Willcox, K.: Model Reduction and Approximation: Theory and
Algorithms. SIAM, Philadelphia (2017)

10. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for para-
metric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)

11. Bhattacharya, K., Hosseini, B., Kovachki, N.B., Stuart, A.: Model reduction and neural networks for
parametric PDEs. arXiv preprint arXiv:2005.03180 (2020)

12. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition.
Biol. Cybern. 59, 291–294 (1998)

13. Bourlard, H., Wellekens, C.: Speech pattern discrimination and multi-layered perceptrons. Comput.
Speech Lang. 3, 1–19 (1989)

14. Cagniart, N., Maday, Y., Stamm, B.: Model order reduction for problems with large convection effects.
Contributions to Partial Differential Equations and Applications. Computational Methods in Applied
Sciences, vol. 47, pp. 131–150. Springer, Cham (2019)

15. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The gnat method for nonlinear model reduction:
effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput.
Phys. 242, 623–647 (2013)

16. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM
J. Sci. Comput. 32(5), 2737–2764 (2010)

17. Chung, J.S., Senior, A.W., Vinyals, O., Zisserman, S.: Lip reading sentences in the wild. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 3444–3453 (2017)

18. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear
units (elus). arXiv preprint arXiv:1511.07289 (2015)

19. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2018)

20. Farhat, C., Grimberg, S., Manzoni, A., Quarteroni, A.: Computational bottlenecks for PROMs: Pre-
computation and hyperreduction. In: P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders,
L. Silveira (eds.) Model Order Reduction. Volume 2: Snapshot-Based Methods and Algorithms.
De Gruyter, Berlin (2020, in press)

21. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J.
1(6), 455–466 (1961)

123

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1186/s40323-015-0055-3
http://arxiv.org/abs/2005.03180
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1810.04805

Journal of Scientific Computing (2021) 87:61 Page 35 of 36 61

22. Freno, B.A., Carlberg, K.T.: Machine-learning error models for approximate solutions to parameterized
systems of nonlinear equations. arXiv preprint arXiv:1808.02097 (2018)

23. Gerbeau, J.F., Lombardi, D.: Approximated lax pairs for the reduced order integration of nonlinear
evolution equations. J. Comput. Phys. 265, 246–269 (2014)

24. Göktepe, S., Wong, J., Kuhl, E.: Atrial and ventricular fibrillation: computational simulation of spiral
waves in cardiac tissue. Arch. Appl. Mech. 80, 569–580 (2010). https://doi.org/10.1007/s00419-009-
0384-0

25. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
26. Guo,M.,Hesthaven, J.S.: Reduced ordermodeling for nonlinear structural analysis using gaussian process

regression. Comput. Methods Appl. Mech. Eng. 341, 807–826 (2018)
27. Guo, M., Hesthaven, J.S.: Data-driven reduced order modeling for time-dependent problems. Comput.

Methods Appl. Mech. Eng. 345, 75–99 (2019)
28. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on

imagenet classification. Proceedings of the IEEE International Conference on Computer Vision (ICCV)
pp. 1026–1034 (2015)

29. Hesthaven, J., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using neural
networks. J. Comput. Phys. 363, 55–78 (2018)

30. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length, and Helmholtz free energy. Pro-
ceedings of the 6th International Conference on Neural Information Processing Systems (NIPS’1993)
(1994)

31. Iollo, A., Lombardi, D.: Advection modes by optimal mass transfer. Phys. Rev. E 89, 022923 (2014)
32. Kani, J.N., Elsheikh, A.H.: DR-RNN: A deep residual recurrent neural network for model reduction.

arXiv preprint arXiv:1709.00939 (2017)
33. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. Presented at the (2015)
34. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural net-

works. Proceedings of the 25th International Conference on Neural Information Processing Systems
(NIPS’2012) 1, 1097–1105 (2012)

35. Kutyniok, G., Petersen, P., Raslan, M., Schneider, R.: A theoretical analysis of deep neural networks and
parametric PDEs. arXiv preprint arXiv:1904.00377 (2019)

36. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient based learning applied to document recognition.
Proceedings of the IEEE pp. 533–536 (1998)

37. Lee, K., Carlberg, K.: Model reduction of dynamical systems on nonlinear manifolds using deep convo-
lutional autoencoders. J. Comput. Phys. 404, 108973 (2020)

38. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern Recognit 36(2),
451–461 (2003)

39. Manzoni, A., Pagani, S., Lassila, T.: Accurate solution of Bayesian inverse uncertainty quantification
problems combining reduced basismethods and reduction errormodels. SIAM/ASAJ.Uncertain.Quantif.
4(1), 380–412 (2016)

40. Miranda González, F.J., Balajewicz, M.: Deep convolutional recurrent autoencoders for learning low-
dimensional feature dynamics of fluid systems. arXiv preprint (2018)

41. Mohan, A., Gaitonde, D.V.: A deep learning based approach to reduced order modeling for turbulent flow
control using LSTM neural networks. arXiv preprint arXiv:1804.0926 (2018)

42. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc.
IRE 50(10), 2061–2070 (1962)

43. Ohlberger, M., Rave, S.: Reduced basis methods: Success, limitations and future challenges. Proceedings
of ALGORITMY pp. 1–12 (2016)

44. Pagani, S., Manzoni, A., Carlberg, K.: Statistical closure modeling for reduced-order models of stationary
systems by the ROMES method. arXiv preprint arXiv:1901.02792 (2019)

45. Pagani, S., Manzoni, A., Quarteroni, A.: Numerical approximation of parametrized problems in cardiac
electrophysiology by a local reduced basis method. Comput. Methods Appl. Mech. Eng. 340, 530–558
(2018)

46. Parish, E., Carlberg, K.: Time-series machine-learning error models for approximate solutions to param-
eterized dynamical systems. arXiv preprint arXiv:1907.11822 (2019)

47. Peherstorfer, B.:Model reduction for transport-dominated problems via online adaptive bases and adaptive
sampling. arXiv preprint arXiv:1812.02094 (2018)

48. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An
Introduction, vol. 92. Springer, Cham (2016)

49. Quarteroni, A., Sacco, R., Saleri, F.: Matematica Numerica. Springer Milan (2008)
50. Raissi,M.: Deep hidden physicsmodels: deep learning of nonlinear partial differential equations. J.Mach.

Learn. Res. 19, 1–24 (2018)

123

http://arxiv.org/abs/1808.02097
https://doi.org/10.1007/s00419-009-0384-0
https://doi.org/10.1007/s00419-009-0384-0
http://arxiv.org/abs/1709.00939
http://arxiv.org/abs/1904.00377
http://arxiv.org/abs/1804.0926
http://arxiv.org/abs/1901.02792
http://arxiv.org/abs/1907.11822
http://arxiv.org/abs/1812.02094

 61 Page 36 of 36 Journal of Scientific Computing (2021) 87:61

51. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial differential
equations. J. Comput. Phys. 357, 125–141 (2018)

52. Raissi,M., Perdikaris, P., Karniadakis,G.E.: Physics informed deep learning (part i): Data-driven solutions
of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561 (2017)

53. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part ii): Data-driven dis-
covery of nonlinear partial differential equations. arXiv preprint arXiv:1711.10566 (2017)

54. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning frame-
work for solving forward and inverse problems involving nonlinear partial differential equations. J.
Comput. Phys. 378, 686–707 (2019)

55. Regazzoni, F., Dede’, L., Quarteroni, A.:Machine learning for fast and reliable solution of time-dependent
differential equations. J. Comput. Phys. 397, 108852 (2019)

56. Reiss, J., Schulze, P., Sesterhenn, J., Mehrmann, V.: The shifted proper orthogonal decomposition: a mode
decomposition for multiple transport phenomena. SIAM J. Sci. Comput. 40(3), A1322–A1344 (2018)

57. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)
58. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature

323, 533–536 (1986)
59. San, O., Maulik, R.: Neural network closures for nonlinear model order reduction. Adv. Comput. Math.

44, 1717 (2018)
60. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Proceedings of

the 27th International Conference on Neural Information Processing Systems (NIPS’2014) 2, 3104–3112
(2014)

61. Trehan, S., Carlberg, K.T., Durlofsky, L.J.: Error modeling for surrogates of dynamical systems using
machine learning. Int. J. Numer. Methods Eng. 112(12), 1801–1827 (2017)

62. Wan, Z., Vlachas, P., Koumoutsakos, P., Sapsis, T.: Data-assisted reduced-order modeling of extreme
events in complex dynamical systems. PLOS ONE 13, e0197704 (2018). https://doi.org/10.1371/journal.
pone.0197704

63. Wang, Q., Ripamonti, N., Hesthaven, J.: Recurrent neural network closure of parametric pod-galerkin
reduced-order models based on the mori-zwanzig formalism. J. Comput. Phys. 410, 109402 (2020)

64. Washabaugh, K.M., Zahr, M.J., Farhat, C.: On the use of discretenonlinear reduced-order models
for the prediction of steady-stateflows past parametrically deformed complex geometries. In: 54th
AIAAAerospace Sciences Meeting (2016). https://doi.org/10.2514/6.2016-1814

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1711.10561
http://arxiv.org/abs/1711.10566
https://doi.org/10.1371/journal.pone.0197704
https://doi.org/10.1371/journal.pone.0197704
https://doi.org/10.2514/6.2016-1814

	A Comprehensive Deep Learning-Based Approach to Reduced Order Modeling of Nonlinear Time-Dependent Parametrized PDEs
	Abstract
	1 Introduction
	2 From Linear to Nonlinear Dimensionality Reduction
	2.1 Problem Formulation
	2.2 Linear Dimensionality Reduction: Projection-Based ROMs
	2.3 Nonlinear Dimensionality Reduction

	3 A Deep Learning-Based Reduced Order Model (DL-ROM)
	3.1 Training and Testing Algorithms

	4 Numerical Results
	4.1 Test 1: Burgers Equation
	4.2 Test 2: Linear Transport equation
	Test 2.1: nµ = 1 Input Parameter
	Test 2.2: nµ = 2 Input Parameters

	4.3 Test 3: Monodomain Equation
	Test 3.1: d = 1 Spatial Dimension
	Test 3.2: d = 2 Spatial Dimensions

	5 Conclusions
	Acknowledgements
	A Basic Concepts of Deep Learning
	A.1 Deep Feedforward Neural Network
	A.2 Convolutional Neural Network
	A.3 Autoencoder Neural Network

	References

