22,039 research outputs found

    Cell Multiplexing and Adaptive Scheduling for Wide Area ATM Networks

    Get PDF
    The ATM UBR, GFR over ABR service categories have been designed for data. However several studies have responded poor TCP performance over satellite ATM resources. We first discuss the various design options available for TCP end systems, IP-ATM switches for long latency connections. We discuss the buffer management policies generated and rate services and the virtual stores destination options in ATM. We present comparison of ATM service categories for TCP transport over satellite links. Keywords: Video Teleconferencing, Adaptive Schedulin

    The Octopus switch

    Get PDF
    This chapter1 discusses the interconnection architecture of the Mobile Digital Companion. The approach to build a low-power handheld multimedia computer presented here is to have autonomous, reconfigurable modules such as network, video and audio devices, interconnected by a switch rather than by a bus, and to offload as much as work as possible from the CPU to programmable modules placed in the data streams. Thus, communication between components is not broadcast over a bus but delivered exactly where it is needed, work is carried out where the data passes through, bypassing the memory. The amount of buffering is minimised, and if it is required at all, it is placed right on the data path, where it is needed. A reconfigurable internal communication network switch called Octopus exploits locality of reference and eliminates wasteful data copies. The switch is implemented as a simplified ATM switch and provides Quality of Service guarantees and enough bandwidth for multimedia applications. We have built a testbed of the architecture, of which we will present performance and energy consumption characteristics

    Handover Mechanisms in ATM-based Mobile Systems

    Get PDF
    This paper presents two handover mechanisms that can be used in the access part of an ATM-based mobile system. The first handover mechanism, which is called Âżhandover synchronised switchingÂż is relatively simple and does not use any ATM multicasting or resynchronisation in the network. It assumes that there is sufficient time available such that all data and history information of the old path can be transferred to the mobile terminal (MT) before the actual handover to the new path takes place. It is possible that the time between a handover decision and the actual handover is too short to end the transmission on the old path gracefully (e.g., ending the interleaving matrix, ending transcoder functions, emptying intermediate buffers). A possible solution to this problem is given by the second handover mechanism, where multicast connections to all possible target radio systems (RAS) are used in the core network. This mechanism is called Âżhandover with multicast support

    Operating Systems Support for End-to-End Gbps Networking

    Get PDF
    This paper argues that workstation host interfaces and operating systems are a crucial element in achieving end-to-end Gbps bandwidths for applications in distributed environments. We describe several host interface architectures, discuss the interaction between the interface and host operating system, and report on an ATM host interface built at the University of Pennsylvania. Concurrently designing a host interface and software support allows careful balancing of hardware and software functions. Key ideas include use of buffer management techniques to reduce copying and scheduling data transfers using clocked interrupts. Clocked interrupts also aid with bandwidth allocation. Our interface can deliver a sustained 130 Mbps bandwidth to applications, roughly OC-3c link speed. Ninety-three percent of the host hardware subsystem throughput is delivered to the application with a small measured impact on other applications processing

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters
    • …
    corecore