
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

March 1993

Operating Systems Support for End-to-End Gbps Networking Operating Systems Support for End-to-End Gbps Networking

Jonathan M. Smith
University of Pennsylvania, jms@cis.upenn.edu

C. Brendan S. Traw
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Jonathan M. Smith and C. Brendan S. Traw, "Operating Systems Support for End-to-End Gbps
Networking", . March 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-33.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/284
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76360198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/284
mailto:repository@pobox.upenn.edu

Operating Systems Support for End-to-End Gbps Networking Operating Systems Support for End-to-End Gbps Networking

Abstract Abstract
This paper argues that workstation host interfaces and operating systems are a crucial element in
achieving end-to-end Gbps bandwidths for applications in distributed environments. We describe several
host interface architectures, discuss the interaction between the interface and host operating system, and
report on an ATM host interface built at the University of Pennsylvania. Concurrently designing a host
interface and software support allows careful balancing of hardware and software functions. Key ideas
include use of buffer management techniques to reduce copying and scheduling data transfers using
clocked interrupts. Clocked interrupts also aid with bandwidth allocation. Our interface can deliver a
sustained 130 Mbps bandwidth to applications, roughly OC-3c link speed. Ninety-three percent of the host
hardware subsystem throughput is delivered to the application with a small measured impact on other
applications processing.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-33.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/284

https://repository.upenn.edu/cis_reports/284

Operating Systems Support for End-to-End
Gbps Networking

MS-CIS-93-33
DISTRIBUTED SYSTEMS LAB 30

Jonathan M. S~nith
C. Brendan S. Traw

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

March 1993

Operating Systems Support for End-to-End Gbps Networking

Jonatlzan M. Smith and C. Brendan S. Traw

Distributed Systems Laboratory, University of Pennsylvania
200 South 33rd St., Philadelphia, PA 19104-6389

ABSTRACT

This paper argues that workstation host interfaces and operating systems are a crucial ele-
ment in achieving end-to-end Gbps bandwidths for applications in distributed environments. We
describe several host interface architectures, discuss the interaction between the interface and
host operating system, and report on an ATM host interface built at the University of Pennsyl-
vania.

Concurrently designing a host interface and software support allows careful balancing of
hardware and software functions. Key ideas include use of buffer management techniques to
reduce copying and scheduling data transfers using clocked interrupts. Clocked interrupts also
aid with bandwidth allocation. Our interface can deliver a sustained 130 Mbps bandwidth to
applications, roughly OC-3c link speed. Ninety-three percent of the host hardware subsystem
throughput is delivered to the application with a small measured impact on other applications
processing.

1. Introduction

The past several years have seen a profusion of efforts to design and implement very-high speed networks which
deliver this speed "end-to-end". The definition of "very-high" varies, but a good example is the AURORA Gigabit
Testbed [5], one of several such testbeds [I]. In AURORA, much of the focus has been on the development of tech-
nologies needed to deliver this performance to workstation-class machines rather than supercomputers. It is our
belief that these machines will be the majority of endpoints in future Gbps networks.

The difficulty posed by the choice of workstations is the mismatch between the performance of the machines
and the bandwidth provided by the network infrastructure such as switches and transmission lines. Specifically, the
network bandwidths are within an order of magnitude of the memory bandwidths of most workstations, and the bur-
den on a host's memory architecture must be minimized for maximum performance. As pointed out by Clark and
Tennenhouse [4], this forces careful design of protocol processing architectures.

Efficiency can be achieved through many design features, but the main options [25] are: optimizing the pro-
cessing functions in the protocol architecture, optimizing the operating system support for data transport, and careful
placement of hardware for network attachment. In this paper, we will focus on operating system and architectural
issues, as we feel that high-performance protocol architecture features such as ordering, errors, duplicates, coordina-
tion, and format conversion have been well-covered by others; see for example Feldmeier [14].

Since this paper focuses on operating system issues, we will outline the approaches to host interface hardware
and supporting software. We then motivate our selection of a particular set of functions in our implementation of an
ATM host interface for the IBM RISC Systemt6000 workstation [24]. The split of work between the interface and
the operating system is discussed, together with several ideas for optimizing end-to-end performance which have
been explored and appear to have considerable promise.

1.1. Host Interfaces

The design and implementation of host interfaces has been of interest since the earliest network implementations?.
Each succeeding generation has dealt with different types of hosts, networks, protocol architectures and networked
applications. Goals have included low cost, high throughput and low delay. Implementations have been optimized
towards achieving one or more of these goals in their operational environments. Some of the key implementation
decisions have been: (1) the portion of protocol architecture functions performed by the interface; (2) signaling
between host and interface; and (3) the placement of the interface in the host computer's architecture. Much of the
migration to hardware is intended to obtain an implementation-specific performance advantage - as Watson and
Mamrak [25] point out, performance is often due as much to implementation techniques as to careful protocol
design. The key question may be the selection of functions to optimize by placement in hardware.

Several interfaces have attempted to accelerate transport protocol processing. The VMP Network Adapter
Board (NAB) [17] implementation accelerates processing of Cheriton's Versatile Message Transaction Protocol
(VMTP). The goals were to reduce the latency required in "request-reply" communications, while delivering high
throughput for data-intensive applications. The NAB separated these two classes of traffic to optimize its perfor-
mance. The NAB included an on-board microcontroller.

The Nectar Communications Accelerator Board (CAB) [22] includes a rnicrocontroller with a complete mul-
tithreaded operating system. The host-CAB interaction is via messages sent over a VME bus, synchronized using a
mailbox scheme. The programmability can be used by applications to customize protocol processing. Cooper, et al.
[7], report that TCPDP and a number of Nectar-specific protocols have been implemented on the CAB.

It remains unclear whether the entire transport protocol processing function needs to migrate to the interface;
Clark, et al. [3] argue that in the case of TCP/IP the actual protocol processing is of low cost and requires very few
instructions on a per-packet basis, and thus could be left in the host with minimal impact.

Less protocol processing is performed by two ATM host interfaces built at Bellcore and Penn. Bellcore's
[lo] ATM Host Interface implementation attaches to the TlJ~~oChannel bus of the DECStation 5000 workstation.
The interface operates on cells, and communicates protocol data units (PDUs) to and from the host. The design
relies on two Intel 80960 RISC microcontrollers to perform the protocol processing and flow control at a rate of 622
Mbps. Like the CAB, it is designed to be programmable, although the programming is mainly designed to explore
Segmentation-and-Reassembly (SAR) algorithms. At this time, Bellcore's interface provides the highest burst per-
formance reported for an ATM host interface [1 1].

Off-board processors can migrate many processing and data movement tasks away from the host CPU. How-
ever, it is not clear that flexibility requires a general purpose processor, as opposed to a solution using, e.g., pro-
grammable logic devices. At Penn, we have developed a scalable host interface architecture for providing segmen-
tation and reassembly functions in dedicated logic [24]. All per cell processing including error detection is per-
formed by the hardware. An initial implementation attaches to the IBM RISC SystemJ6000 workstation through its
Micro Channel 110 bus.

A second implementation of our segmentation and reassembly architecture is currently in progress to further
explore the design space. The result will be an ATM Link Adapter for use with the HP 9000/700 series worksta-
tions equipped with Afterburner [18] cards. The AfterburnertATM Link Adapter combination will provide the same
basic functionality as the initial implementation with two exceptions. First, for additional ATM Adaptation Layer 5
(AALS) support, the CRC32 will be generated and checked as reassembled AALS PDUs are moved from the ATM
Link Adapter to the Afterburner. Second, the Afterburner will provide support for computing IP checksums in
hardware as well as a per-PDU processor interrupt.

Fore Systems, Inc. [6], and Cambridge UniversityIOlivetti Research [15], have each explored an approach
which puts minimal functionality in interface hardware. This approach assigns almost all tasks to the workstation
host including ATM adaptation layer processing.

Minimalist approaches can take advantage of aggressive workstation technology improvement, which might
outstrip that of host interface components. However, such an approach has two potential failings. First, RISC
workstations are optimized for data processing, not data movement, and hence the host must devote significant

t Detailed information on some of these inlerfaces and supporting software is available in a Special Issue of the IEEE Journal on Selec~ed Areas
in Communications [Zl].

resources to manage high-rate data movement. Second, the operating system overhead of such an approach can be
substantial without hardware assistance for object aggregation and event management.

Table I summarizes some high-level design features for some example host interfaces.

Table 1: Signaling, Units, and Intelligence
Legend: I - Interrupt, CI - Clocked Interrupt

Table I1 further lists features of some ATM network host interfaces.

Table 1I: ATM-oriented features

1.2. Host Interface Attachment

From the point of performance, an application can do no better than have a dedicated host interface available
to it. The host interface would communicate via memory shared with the application, so that copying was minim-
ized both on the processor and on the UO bus. The operating system might involve itself in, e.g., scheduling, but it
would have a limited role so that the application peak bandwidth would approach the limit of network or memory
bandwidth. Figure 1 illustrates a general architecture for a host interface and will allow us to discuss several
options for host attachment.

System
Bus

memory
objects

Figure 1: General Host Interface Architecture

We will enumerate a set of options using this figure and attempt to assess their performance potential. This
enumeration loosely follows B. Ahlgren's [13].

1. The Host Interface is capable of Direct-Memory Access (DMA), which means that it can communicate with
the system memory directly, without processor intervention. The typical system (e.g., UNIX) uses the Host
Interface DMA capability to copy the data from the network into a buffer managed by the operating system.
The data is then copied by the CPU from the system buffer to a buffer owned by the application, which also
resides in the system memory. Thus, a given piece of data travels over the System Bus three times: Host

Host
Interface

network
packets

Interface to Memory, Memory to CPU, and CPU to Memory.

2. The Host Interface is capable of DMA, and the operating system is able to arrange for data to be transferred
directly to the application address space. Thus, a given piece of data travels over the System Bus once, from
Host Interface to Memory.

3. The Host Interface has a processor-addressable memory area, which the operating system manages. When
data arrives in the Host Interface's buffers, the operating system copies this data into the user address space.
In this model, the data must travel the bus twice, once from Host Interface to CPU, and then from the CPU to
Memory.

4. The Host Interface has a processor-addressable memory area, where the application buffers are located. This
means that data never traverses the system memory bus, or does not until it is referenced by the processor.
This is equivalent to connecting the host interface directly to the system memory.

5. The Host Interface can be connected directly to the CPU [5] , as in augmenting the processing unit with a co-
processor. As in Scheme 4, there is no memory bus traversal, and further, the connection is to a system com-
ponent which operates at speeds higher than memory bandwidths.

Each of these schemes is affected by a number of other considerations.

First, most modern architectures include a cache, which decreases the access latency of frequently used data,
but must be kept in a state consistent with system memory. The cache is typically co-located with the processing
unit, so it either must be kept consistent or flushed when new data arrive. Maintaining is considerably easier when
the data passes through the processor - Scheme 2 must flush cache for areas affected by the DMA, and Scheme 4
must flush the cache, either under control of the CPU or the Host Interface. Schemes 1 and 3 should be able to
obtain up-to-date cache copies when the data is copied into the user address space.

Second, host interfaces will also be used for applications which require specialized peripherals, such as video
conferencing. Thus it is important to keep a good balance between I10 and memory accessibility. The DMA based
schemes do this, but the memory-on-interface schemes (Schemes 3 and 4) provide an unorthodox I10 model, and
thus would present difficulties in I10 operations to and from other devices. The coprocessor approach would involve
the processing unit in all operations connecting the network to other devices.

Third, Schemes 1 and 3 involve the processor in copying data across address-space boundaries. Thus, the pro-
cessor must reduce its processing capacity by the amount of time spent copying data - this would be a considerable
fraction of its instruction-processing capacity at high bandwidths. The co-processor approach likewise shares
processing-unit capacity between processing load and network traffic.

Finally, I10 channel architectures provide a number of practical attractions, among which are access to other
peripherals, structuring, concurrency control, and features such as virtual address translation by channel controller
hardware. In addition, connection to a bus can aid portability across CPU and system architectures, and access to
vendor's If0 bus specifications is considerably less restricted than to system memory bus specifications.

1.3. Interaction with Software

Operating system software plays a key role in the achievement of high end-to-end networking performance.
The abstraction provided by the host interface is that of a device which can transfer data units between a network
and system memory. The software must build upon this abstraction to satisfy application requirements. A signifi-
cant constraint on such software is its embedding in the framework of an operating system which satisfies other
(possibly conflicting) requirements. Particular application needs include transfer of data into application-private
address spaces, connection management, high throughput, low latency, and the ability to support a variety of traffic
types. Traffic types include traditional bursty data communications traffic (such as transaction-style traffic), bulk
data transfer, and the sustained bandwidth requirements of applications using continuous media. We believe that
approaches optimized towards particular traffic types, such as low-latency transactional traffic (221, will suffer if the
traffic mix varies considerably.

The software operating on the host is usually partitioned functionally into a series of layers defined by protec-
tion boundaries. Typically, each software layer contains several protocol layers. The applications are typically exe-
cutable programs, or groups of such programs cooperating on a task, which a user might invoke. Applications which
require network access obtain it via abstract service primitives such as reado, write(), and sendto(). These service
primitives provide access to an implementation of some layers of the network protocol, as in the UNIX system's

access to TCPiIP through the socket abstraction. The protocol is often designed to mask the behavior of the network
and the hardware connecting the computer to the network, and its implementation can usually be split into device-
independent and device-dependent portions.

Significant portions of protocol implementations may be embedded in the operating system of the host, where
the service primitives are system entry points, and the device-dependent portion is implemented as a "device
driver." Such device drivers have a rigidly specified programmer interface, mainly so that the device-independent
portions of system software can form a reasonable abstraction of their behavior. Placement of the protocol functions
within the operating system is dictated by two factors, policies and perjormance. The key policies which an operat-
ing system can enforce through its scheduling are fairness (e.g., in multiplexing packet streams) and the prevention
of starvation. High performance may require the ability to control timing and task scheduling, the ability to manipu-
late virtual memory directly, the ability to fully control peripheral devices, and the ability to communicate effi-
ciently (e.g., with a shared address space). All of these requirements can be met by embedding the protocol func-
tions in the host operating system. In practice, the main freedoms for the host interface software designer lie in the
design of the device driver, since it forms the boundary between the host's device independent software and the
functions performed by the device.

The software architect is presented with the following choices as to detailed implementation strategy:

1. Based on the capabilities of the interface (e.g., its provision for programmed 110, DMA, and streaming), what
is the partitioning of functionality between the host software and the host interface hardware? For example,
use of DMA or streaming removes the need for a copying loop in the device driver to process programmed
I/0, but may require a variety of locks and scheduling mechanisms to support the concurrent activities of
copying and processing. Poor partitioning of functions can force the host software to implement a complex
protocol for communicating with the interface, and thereby reduce performance.

2. Should existing protocol implementations be supported? On the one hand, many applications are immediately
available when an existing implementation is supported, e.g., TCPIIP or XNS. On the other, significant per-
formance (and hopefully new applications) can be gained by ignoring existing stacks in favor of stacks optim-
ized to the new Gbps networks [4] and interface hardware, using a new programmer interface. Or, both stacks
could be supported, at a significant cost in effort; this allows both older applications and new applications
with greater bandwidth requirements to coexist. Methods such as the x-Kernel 116, 191 may provide a method
for customized stacks to be built on top of operating system support such as we describe in this paper.

3. How are services provided to applications? One key example is the support for paced data delivery, used for
multimedia applications. As the host interface software is a component in timely end-to-end delivery, it must
support real-time data delivery. This implies provision for process control, rimers, etc. in the driver software.

4. How do design choices affect the remainder of the system? The host interface software may be assigned a
high priority, causing delays or losses elsewhere in the system. Use of polling for real-time service may affect
other interrupt service latencies. The correct choices for tradeoffs here are entirely a function of the worksta-
tion user's desire for, and use of, network services. While any tradeoffs should not preclude interaction with
other components of the system, e.g., storage devices or frame buffers, increasing demand for network ser-
vices may bias decisions towards delivering network subsystem performance.

Given the cost of interrupts and their effect on processor performance, strategies which reduce the number of inter-
rupts per data transfer can be employed [17]. An example would be using an interrupt only as an event indicator.
The transfer of bursts of ATM cells may arise as a consequence of the mismatch between larger application data
units and the ATM payload of 48 bytes would be accomplished in a scheduled manner, e.g., using polling.

1.4. Interrupts - Clocked versus Data-Driven

One of the key issues in the design of operating system features which support interactions with external
events (such as amving data) is the signaling protocol. There are three common approaches used:

1. Pure "busy-waiting", where the external event can be detected by a change in, e.g., an addressable status
register. The processor continuously examines the stateword until the change occurs, and then resumes pro-
cessing with the newly-arrived data. "Busy-waiting" is rarely if ever used in multitasking systems, since it
effectively precludes use of the processor until the event arrives. It is more commonly used by dedicated con-
trollers. "Busy-waiting" can be used with priorities to enforce some degree of isolation among activities on
the processor.

2. Interrupts are an artifact of the desire to timeshare processors among activities. The basic idea is that the
event arrival (most likely detected by a low-level busy-waiting scheme in the external device) causes the pro-
cessor to be interrupted, that is, to cease its current flow of control and to begin a new flow of control dictated
by data arrival. Typically, this involves transferring the data to a processor storage location where the data can
be processed later, using a normal flow of control. When interrupt service is complete, the processor resumes
the interrupted flow of control. The two difficulties with interrupts are their asynchronous arrival and their
cost. The asynchronous arrival forces concurrency control techniques to be employed, and the interrupt ser-
vice time improves much more slowly than microprocessor speeds.

3. Clocked interrupts try to achieve a somewhat different balance of goals. A periodic software timer is used to
interrupt the flow of control of the processor as with any other interrupt. Interrupt service then consists of
examining changed statewords, as in the "busy-waiting" scheme. The tradeoffs here are closely tied to the
implementation environment, but an illustrative example is given by the UNIX [23] callout table design, used
for operating system management of pools of teletypewriter lines.

We have chosen clocked interrupts as the signaling mechanism for our host interface because of the operating
environment. In particular, as pointed out in [12] multiplexing is a key issue, and in an end-to-end architecture, the
end-points are processes. While the host interface demultiplexes traffic into per-virtual circuit queues, these queues
must be transferred to the appropriate applications processes. In addition, Quality of Service guarantees, especially
allocated bandwidths, must be supported. Our view is that like other system managed resources, bandwidth sharing
can be split between policy and mechanism. The policy is largely a function of higher layers in a protocol hierarchy,
but schedulingis the operating system mechanism most suited to allocating bandwidth, as it is a form of time-
division.

Using clocked interrupts is an engineering decision based on factors such as costs and traffic characteristics.
A simple calculation shows the tradeoff. Consider a system with an interrupt service overhead of C seconds, and k
active channels, each with events arriving at an average rate of li events per second. Independent of interrupt ser-
vice, each event costs a seconds to service, e.g., to transfer the data from the device. The offered traffic is A.k, and
in a system based on an interrupt-per-event, the total overhead will be h.ak.C. Since the maximum number of
events serviced per second will be 1 / C+a, the relationship between parameters is that l<h.k.(C+a). Assuming
that C and a are for the most part fixed, we can increase the number of active channels and reduce the arrival rate
on each, or we can increase the arrival rate and decrease the number of active channels.

However, assuming clocked interrupts delivered at a rate P per second, we get the relationship 1 cP-C+h.k.a.
Since a is very small for small units such as characters, and Cis very large, it makes sense to use clocked interrupts,
especially when a reasonable value of P can be employed. In the case of modem workstations, C is about lo-'
second. Note that as the traffic level rises, more work is done on each clock "tick", so that the data transfer rate
h.k.a asymptotically bounds the system rather than the interrupt service rate. To be fair, one should note that tradi-
tional interrupt service schemes can be improved, e.g., by aggregating traffic into larger packets (this reduces h sig-
nificantly, while typically causing a slight increase in a), or by using an interrupt on one channel to prompt scanning
of other channels.

Given the wide variety of traffic proposed for ATM networks, and our desire to accommodate such traffic, we
chose to explore the use of clocked interrupts.

2. The Penn ATM Interface

2.1. A Programmer's View of the Hardware

The Host Interface is implemented as a pair of cards which share a physical layer transceiver. The Segmenter
card breaks variable-sized Protocol Data Units (PDUs) into fixed-size ATM cell bodies, prepends headers, and
transmits the cell. The Reassembler card receives multiplexed streams of ATM cells, which it demultiplexes using
the ATM cell header into a number of queues, one queue per virtual circuit. The queue numbers are used as names
by the host, which absorbs data by presenting a queue identifier and initiating a transfer. Each card behaves as a bus
master, which provides a DMA-like capability to transfer data using the bus bandwidth-maximizing streaming
transfer mode.

The card pair provides the illusion of a fast network with variable-sized data units using an ATM network and
segmentation and reassembly logic. The interface performs adaptation layer processing, which provides a higher-

level interface to the ATM network for applications. Since adaptation layer processing typically involves integrity
checks such as CRC checksums, the checks are done in hardware. The illusion of variable-sized PDUs is used to
significant advantage by the host software support, discussed next.

2.2. Software Implementation Overview

UNIX and its derivatives are the development platform for almost all host software research, because they are
the dominant operating systems on workstations. These operating systems unfortunately impose a number of addi-
tional constraints on the designer, in particular, the high cost of system calls due to their generality and the crossing
of an applicationlkernel address space protection boundary. Pu, er al. [20] report that over 1000 instructions are exe-
cuted by a read() call before any data are actually read. UNIX also embeds a number of policy decisions about
scheduling, which as indicated above, is event-driven and designed to support interactive computing for large
numbers of users. While several UNIX derivatives have been modified to support "real-time" behavior, these are
non-standard, making solutions dependent on them non-portable. A number of other evolutions in UNIX, however,
appear promising for high performance implementations and efficient application-kernel communication, such as
shared memory, memory-mapped files, and provision for concurrency control primitives such as semaphores.

The current host interface support software consists of an AIX character-special [23] device driver. The
software enables the host interface hardware to copy data directly from the application address space.

The interface is initialized when the device special file /dev/host{n) is first opened. Initialization consists of
probing the device at a distinguished address which causes i t to be reset, build data structures in the Reassembler, as
well as performing various set-up operations for the software. The operations currently include pinning the
software's pages into real memory by removing them as candidates for page replacement. After initialization, the
device and software are ready for operation; routines for all appropriate AIX calls (e.g., read(), write(), ioctl(), etc.)
are provided. The read() and write() calls perform data transfer operations, while iocrl() is used for control opera-
tions such as specifying Virtual Circuit Identifiers to be associated with a particular channel. The code fragment
shown below in Figure 2 illustrates how a programmer would access the device for writing; this particular fragment
is taken from the measurement software we used for performance evaluation.

if ((fd = open('/dev/host-so', 0-WRONLY)) == -I){
perror ("Couldn' t open') ;

exit (-1) ;
1

set-header(fd, vci, mid) ; / * calls ioctl0 * /

for(i=O; i<repeats; i++){
if (write(fd, buf, count) == -1)

perror ('write failure") ;
1

Figure 2: Code fragment to access and exercise Segmenter

The software is accessed mainly through the ioctl(), read(), and write() system entry points. loctl() is employed for
such control tasks as specifying VCIs and MIDs for use in formatting ATM cells; the VCI and MID are specified to
the driver on a per-file descriptor basis. They are used, e.g., to specify header data to the segmenter card so that it
can format a series of ATM cells for transmission. locrl() is used for any behavioral customization of the software,
such as bandwidth allocations, maximum delays, and pacing strategies. Data transfer is done with read() and
write(, providing a clean separation between transfer and control interfaces.

2.3. Reduced Copying

As we have discussed above, it is desirable to reduce copying. The advantage of reducing copying has been
observed by others, e.g., Watson and Mamrak [25] and confirmed in other implementations [2]. The key issue is
coordinating the hardware and software in such a way that the copying cost can be reduced; we have done this by
copying data directly to and from user address spaces, as discussed in Section 1.2, above.

When the write() call is invoked on the device, user data is available to the driver through a u i o structure
element. If the data is to be put into kernel buffers, it is copied from the user address space into one of the 64K

buffers. If data is to be copied fiom the user process address space, the u i o structure element is used to mark the
application pages as pinned, and to obtain a "cross-memory descriptor" which allows the user data to be addressed
by a device on the Micro Channel bus. When a hardware-provided status flag on the Segmenter indicates the device
is inactive, a streaming mode transfer is set up. The software prepares for streaming by initializing a number of
translation control words (TCWs) [8] in the Micro Channel's U 0 Channel Controller (IOCC). In addition, page
mappings are adjusted for pages in the host memory; the RISC Systed6000 uses an Inverted Page Table also
referred to as the Page Frame Table (PFT). The TCWs and Page Frame Table entries allow both the device and the
CPU to have apparently contiguous access to scattered pages of real memory. The pointer tables are illustrated in
Figure 3.

IOCC TCW h-tj
n terface .El

Figure 3: Illustration of TCW and PFT usage

After the TCWs and other state are set up, the device is presented with the data size and buffer address, which ini-
tiates the transfer.

The provision for TCWs in the IOCC a.llows large contiguous transfers directly to and from the address space
of an AIX user process. The IOCC's translation table removes the burden of copying data across the protection
boundary from the software, imposing it on the hardware portion of the interface architecture.

Overlapped operation (e.g., double-buffering) to and from user address spaces is somewhat more complex
than for transfers to and from PDU copies kept in kernel buffers, due to the risks inherent in concurrent access to
shared state by the device and the process. Two obvious approaches are: (1) blocking (i.e., ceasing execution of)
the process until streaming is complete, and (2) trusting the process to not access the data (e.g., the process could do
its own double-buffering). The first approach prevents a single process from using the hardware's capability for
overlapped operation. This seems unwise (although it is what we do currently), since most applications use the CPU
to transform data which travels to and from the network. The second approach assumes either intelligence or
benevolence. However, as we have seen in practice, the inevitable crashes due to inconsistent data in the kernel pun-
ish other users for a transgression. A third approach is to force the process to block (cease execution) when it
accesses a "busy" buffer. In this way, "well-behaved" processes can achieve maximum overlap, while AIX is
protected from the indiscretions of "poorly-behaved" processes. This can be accomplished by tagging the active
buffer's P f l entries with "fault-on-write"; the process is then blocked until the streaming transfer is complete and
the page fault can be resolved. This combines the good features and removes the complications of the other two
schemes, and is the approach currently being explored.

2.4. Timer Implementation

A periodic timer interrupt is generated using the AIX timer services [9]. The timer interrupt service routine
examines the control tables in order to decide which actions are to be taken next. All operations are of short duration
(e.g., examining the CAMS on the host interface card) so that several can be performed during the interrupt service
routine. In addition, the status of the device and its internal tables are determined, in order to drain active VCs and
receive reassembled CS-PDUs. Logical timers in the tables which have expired are updated and reset when service
is performed.

AIX on the IBM RISC Systed6000 Models 520 and 320 can suppon timer frequencies of 1000 Hz [9] before
there is significant negative performance impact from timer processing. At a timer frequency of 60 Hz, at least 90%
(worst case, -98% average) of the processor capacity should remain available to applications. In one sixtieth of a
second, about 6000 cells can arrive on an OC-3c at full rate, and the Reassembler buffer can accommodate about
7500 Cells. While less-frequent polling improves throughput and host performance, it has some potentially negative

consequences for latency; for example a 60 Hertz timer would give a worst-case latency of over 16.7 milliseconds
before data reached an application, far slower than desired for many LAN applications [17]. We are currently
studying the problem of setting the timer interval, but as discussed above, the timer interval should be a function of
traffic. At this point in time, real traffic considerations are not well-understood.

A key feature of using timers is provision for bandwidth allocation by limiting per-connection data transfers.
This turns out to be trivial with a clocked interrupt system, as PDUs can be delivered at a multiple of the base clock
rate, or the number of PDUs per clock interval can be controlled. Since read() and write() serve to synchronize the
process with data motion, a simple bandwidth allocation scheme is enabled. We control these allocations using
parameters passed via ioctl().

3. Performance

A key test of the various architectural hypotheses presented is their experimental evaluation; since many of these
claims are related to performance, our experiments are focused on timing and throughput measurements, and ana-
lyses of these measurements. Since application performance is the final validation, any experiments should be as
close to true end-to-end experiments as possible. In our case, data should pass from a user process (the application),
through the software and hardware subsystems, to the network.

A simple program to gather timing measurements was written, of the basic form shown above in Figure 2.
While the option-handling is not shown for the sake of brevity, the basic options include a repetition count, a buffer
size, and a bit pattern with which to populate the buffer. This latter option was included so that recognizable data
patterns would be produced on the logic analyzer used to monitor the experiments. The defaults used are 1, 65536
(bytes), and a counting pattern.

A script which varied the buffer size and number of repetitions to achieve a constant total of bytes was writ-
ten. The parameters used ranged from a buffer size of 1KB and repetition count of 8K to a size of 64KB and a count
of 128, yielding a total byte count of 8MB. The performance for buffer sizes of IKB, 4KB, 16KB and 64KB were
31Mbps, 72Mbps, 108Mbps and 125Mbps, respectively. The complete set of tests is plotted in Figure 4.

Bandwidth
(in Mbls)

1 2 5 10 20 50
PDU Size (in KB)

Figure 4: Measured performance, Mbls vs. PDU size

The maximum measured performance we have observed is 130Mbps, which is about 93% of the limit of the
bottleneck in the hardware subsystem, the UO Channel Controller.

3.1. Discussion

Given the observed measurements summarized above, the software is not the system bottleneck. We have also
been able to read data at these rates, thus there is no read vs. write asymmetry in performance.

These measurements may not reflect the throughput that would be seen by an application using a protocol
suite such as TCPJIP, although they may reflect an upper bound on the throughput achievable with an

implementation.

The tests do not represent end-to-end throughput measurements between processors across the network, but
rather rates sustainable by the host when delivering data to the network. Thus, they set an upper bound on the proto-
col performance for protocol architectures using our operating system work as a base.

3.2. Effect on unrelated applications

Since the "end-to-end" Gbps goal includes application processing, any solution must preserve the ability of
the workstation to run applications while interacting with the network fabric. In addition, whatever solution is
chosen must support classes of applications likely to exercise the system's capabilities. The operating system must
ensure that the local portion of the application is able to gain sufficient processor resources to send or absorb its
traffic.

Informal benchmarking done from another terminal while these scripts were run on a lightly-loaded IBM
RISC Systern/6000 Model 320 showed little or no observable system performance degradation. A trivial test which
competes for 110 and processing resources, a multimegabyte R P copying data from a remote IBM PCRT con-
nected through an Ethernet, required about 5% more time. We are now performing formal studies using multifactor
performance indices such as SPECmarks to estimate the impact of various tunable parameters in our implementa-
tion.

3.3. Analysis of Results

For small block sizes, software is the limiting factor to system performance. Smaller block sizes force the
application to make frequent system calls, which force the AIX system to context-switch frequently. Larger block
sizes reduce the per-byte software overhead, since the system calls are amortized over a larger data transfer. As this
overhead becomes (relatively) smaller, the data transfer rate dominates the performance, and since the software
does not participate in actual transfer to and from the device, the hardware performance limits bound the
throughput. This can be seen by studying the relative performance gain for each doubling in block size. The perfor-
mance is almost doubled as block size is increased from 1KB to 2KB, but the increase from 32KB to 64KB gives
only a 10% gain.

We are now exploring strategies which can give us better performance for smaller block sizes. One such idea
is the use of an area of shared memory to allow the kernel and applications to communicate without system calls,
thus eliminating their performance impact.

4. Conclusions

Operating Systems employed in high-speed networks must reduce copying and provide support for isochronous
traffic.

We have shown here one way to reduce copying by enabling data transfers directly to and from buffers
located in application-process address spaces. The method has been demonstrated experimentally and shown to
deliver high throughputs. Operating System support must also include scheduling, which allows bandwidth-
allocated traffic streams to be delivered. The implementation we described provides resource scheduling for net-
work users, and considerably reduces interrupt overhead.

Clocked interrupts have been tested over a range of values from 1Hz to 500Hz, and high throughput is
delivered to applications. Setting the base rate is an interesting (and unsolved) optimization problem which trades
higher throughput at low clock rates against lower delays at high clock rates. Until we have a real mix of applica-
tions traffic, it will be hard to intelligently set the value.

One important (and often overlooked) observation we would like to make about our interface is that it was
remarkably easy to program. This was not an accident; the hardware and software developed together. The result of
a simple programming model, though, is simple software. The simplicity of the software allows it to run efficiently,
and eases later optimizations. One difficulty we have observed in practice with implementations employing on-
board protocol processing is that communication with the interface requires a protocol [22]; we believe that this is
undesirable.

All strategies are functions of their environment and the economics of various tradeoffs within that environ-
ment. When memory-bandwidth is constrained relative to network bandwidth, applications have requirements for

high-bandwidth isochronous traffic, and interrupts are expensive, these ideas appear useful.

5. Notes and Acknowledgments

Our collaboration with Bruce Davie has had a strong impact on this work. Dave Farber, Dave Sincoskie, Dave Ten-
nenhouse, Marc Kaplan and Dave Clark have all provided insights and constructive criticism. David Feldmeier's
suggestions made this a much better paper.

AURORA is a joint research effort undertaken by Bell Atlantic, Bellcore, IBM Research, MIT, MCI, NYNEX,
and Penn. AURORA is sponsored as part of the NSFIDARPA Sponsored Gigabit Testbed Initiative through the Cor-
poration for National Research Initiatives. NSF (Cooperative Agreement Number NCR-8919038) and DARPA pro-
vide funds to the University participants in AURORA. Bellcore is providing support through the DAWN project.
IBM has supported this effort by providing RISC Systed6000 workstations, and this work was partially supported
by an IBM Faculty Development Award. The Hewlett-Packard Company has supported this effort through dona-
tions of laboratory test equipment and workstations.

RISC Systed6000, AIX, PCIRT, PSI2 and Micro Channel are trademarks of IBM. Ethernet is a trademark of
Xerox. m ~ o C h a n n e 1 and D E C S ~ ~ ~ O ~ are trademarks of Digital Equipment Corporation. HP9000 is a trademark of
Hewlett-Packard. UNIX is a trademark of UNIX Systems Laboratories.

6. References

[I] Gigabit Testbed Initiative Summary, Corporation for National Research Initiatives, 1895 Preston White Drive,
Suite 100, Reston, VA 22091 USA (January 1992). in£ o8nri. reston. va .us

[2] D. Banks and M. Prudence, "A High-Performance Network Architecture for PA-RISC Workstations," IEEE
Journal on Selected Areas in Communications (Special Issue on High Speed Computer/Network Interfaces)
l l (2) (February 1993).

[3] David D. Clark, Van Jacobson, John Romkey, and Howard Salwen, "An Analysis of TCP Processing Over-
head," IEEE Communications Magazine 27(6), pp. 23-29 (June 1989).

[4] D. D. Clark and D. L. Tennenhouse, "Architectural considerations for a new generation of protocols," in
Proc. ACM SIGCOMM '90, Philadelphia, PA (September 1990).

[5] D. D. Clark, B. S. Davie, D. J. Farber, I. S. Gopal, B. K. Kadaba, W. D. Sincoskie, J. M. Smith, and D. L.
Tennenhouse, "An Overview of the AURORA Gigabit Testbed," in Proceedings, INFOCOM 1992,
Florence, ITALY (1992).

[6] Eric Cooper, Onat Menzilcioglu, Robert Sansom, and Francois Bitz, "Host Interface Design for ATM
LANs," in Proceedings, 16th Conference on Local Computer Networks, Minneapolis, MN (October 14-17,
1991), pp. 247-258.

[7] Eric C. Cooper, Peter A. Steenkiste, Robert D. Sansom, and Brian D. Zill, "Protocol Implementation on the
Nectar Communication Processor," in Proceedings, SIGCOMM '90, Philadelphia, PA (September 24-27,
1990), pp. 135-144.

[8] IBM Corporation, IBM RISC System/6000 POWERstarion and POWERserver: Hardware Technical Refer-
ence, General Information Manual, IBM Order Number SA23-2643-00, 1990.

[9] IBM Corporation, "AIX Version 3.1 RISC Systern/6000 as a Real-Time System," Document Number
0624-3633-0, Austin, TX (March 1991). International Technical Support Center

[lo] Bruce S. Davie, "A Host-Network Interface Architecture for ATM," in Proceedings, SICCOMM 1991,
Zurich, SWITZERLAND (September 4-6, 199 l), pp. 307-3 15.

[l l] Bruce S. Davie, "The Architecture and Implementation of a High Performance Host Interface," IEEE Jour-
nal on Selected Areas in Communications (Special Issue on High Speed Computer/Network Interfaces) l l (2)
(February 1993).

[12] D. C. Feldmeier, "Multiplexing Issues in Communication System Design," in Proc. ACM SIGCOMM 90,
Philadelphia, PA (September 1990), pp. 209-219.

[13] D. C. Feldmeier, High Perjorrnance Protocol Meeting - Descriptions of Slides, August 20-21st, 1992.

[14] D. C. Feldmeier, "A Framework of Architectural Concepts for High-Speed Communication Systems," IEEE
Journal on Selected Areas in Communications l l (4) (May 1993).

[15] David J. Greaves, Derek McAuley, and Leslie J. French, "Protocol and interface for ATM LANs," in
Proceedings. 5th IEEE Workshop on Metropolitan Area Networks, Taormina, Italy (May 1992).

1161 N. C. Hutchinson and L. L. Peterson, "The x-Kernel: An architecture for implementing network protocols,"
IEEE Transactions on Software Engineering 17(1), pp. 64-76 (January 1991).

[17] Hemant Kanakia and David R. Cheriton, "The VMP Network Adapter Board (NAB): High Performance Net-
work Communication for Multiprocessors," in Proceedings, ACM SIGCOMM '88 (August 16-19 1988),
pp. 175-187.

[18] John Lumley, "A High-Throughput Network Interface to a RISC Workstation," in Proceedings, IEEE
Workshop on the Architecture and Implementation of High-Performance Communications Subsystems (HPCS
'92), Tucson, AZ (February 17-19, 1992).

[19] S. O'Malley and L. L. Peterson, "A Dynamic Network Architecture," ACM Transactions on Computer Sys-
tems lO(2) (May 1992).

[20] Calton Pu, Henry Massalin, John Ioannidis, and Perry Metzger, "The Synthesis System," Computing Systems
l(1) (1988).

[21] Jonathan M. Smith, Eric C. Cooper, Bruce S. Davie, Ian M. Leslie, Yoram Ofek, and Richard W. Watson,
"Guest Editorial," IEEE Journal on Selected Areas in Comnzunications (Special Issue on High Speed
Computer/Network Inrerfaces) l l (2) (February 1993).

[22] Peter A. Steenkiste, "Analyzing Communication Latency Using the Nectar Communication Processor," in
Proceedings, SIGCOMM '92 Conference, Baltimore, MD (August 17-20, 1992), pp. 199-209.

[23] K.L. Thompson, "UNIX Implementation," The Bell System Technical Journal 57(6, Part 2), pp. 1931-1946
(July-August 1978).

[24] C. Brendan S. Traw and Jonathan M. Smith, "Hardware/Software Organization of a High-Performance ATM
Host Interface," IEEE Journal on Selected Areas in Communications (Special Issue on High Speed
Computer/Network Integaces) 1 l(2) (February 1993).

[25] Richard W. Watson and Sandy A. Mamrak, "Gaining Efficiency in Transport Services by Appropriate
Design and Implementation Choices," ACM Transactions on Computer Systems 5(2), pp. 97-120 (May 1987).

	Operating Systems Support for End-to-End Gbps Networking
	Recommended Citation

	Operating Systems Support for End-to-End Gbps Networking
	Abstract
	Comments

	tmp.1184681404.pdf.HccsP

