6 research outputs found

    Mobile Coordinated Wireless Sensor Networks with Fault-Tolerance for Structural Health Monitoring

    Get PDF
    This paper introduces the Structural health monitoring (SHM) using Mobile Access Coordinated Wireless Sensor Network (MA-WSN) energy - efficient scheme for time sensitive applications. In Sensor Networks with Mobile Access points (SENMA), the mobile access points (MAs) traverse the network to collect information directly from each sensor. To organize disjoint nodes forming into small groups in high energy level, sensors are used in clustering methods, where each cluster has a coordinator referred as Cluster Head (CH). Early detection of failure CHs will reduce the data loss and provide possible minimal recovery efforts. Failure CHs are unable to connect to automatically organized another cluster head of access node and this access node collect and transfer data directly. So a new technique has been proposed in this paper which improves the life time of sensor nodes or it minimizes the maximum energy used by the sensor for transmitting data to the base station and also ensures monitoring quality. The performance of the proposed placement method has been tested by NS2 simulations and the result is compared with the sensor placement using effective independence method. This method obtains almost the same placement quality as that provided by using effective independence method, but with improvement in system life time

    Power Aware Mobility Management of M2M for IoT Communications

    Get PDF

    A survey on MAC-based physical layer security over wireless sensor network

    Get PDF
    Physical layer security for wireless sensor networks (WSNs) is a laborious and highly critical issue in the world. Wireless sensor networks have great importance in civil and military fields or applications. Security of data/information through wireless medium remains a challenge. The data that we transmit wirelessly has increased the speed of transmission rate. In physical layer security, the data transfer between source and destination is not confidential, and thus the user has privacy issues, which is why improving the security of wireless sensor networks is a prime concern. The loss of physical security causes a great threat to a network. We have various techniques to resolve these issues, such as interference, noise, fading in the communications, etc. In this paper we have surveyed the different parameters of a security design model to highlight the vulnerabilities. Further we have discussed the various attacks on different layers of the TCP/IP model along with their mitigation techniques. We also elaborated on the applications of WSNs in healthcare, military information integration, oil and gas. Finally, we have proposed a solution to enhance the security of WSNs by adopting the alpha method and handshake mechanism with encryption and decryption

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Data Transmission Scheme Using Mobile Sink in Static Wireless Sensor Network

    Get PDF
    Multihop communication in wireless sensor network (WSN) brings new challenges in reliable data transmission. Recent work shows that data collection from sensor nodes using mobile sink minimizes multihop data transmission and improves energy efficiency. However, due to continuous movements, mobile sink has limited communication time to collect data from sensor nodes, which results in rapid depletion of node’s energy. Therefore, we propose a data transmission scheme that addresses the aforementioned constraints. The proposed scheme first finds out the group based region on the basis of localization information of the sensor nodes and predefined trajectory information of a mobile sink. After determining the group region in the network, selection of master nodes is made. The master nodes directly transmit their data to the mobile sink upon its arrival at their group region through restricted flooding scheme. In addition, the agent node concept is introduced for swapping of the role of the master nodes in each group region. The master node when consuming energy up to a certain threshold, neighboring node with second highest residual energy is selected as an agent node. The mathematical analysis shows that the selection of agent node maximizes the throughput while minimizing transmission delay in the network
    corecore