3 research outputs found

    An Incentive Mechanism for Cooperative Data Replication in MANETs - a Game Theoretical Approach

    Full text link
    Wireless ad hoc networks have seen a great deal of attention in the past years, especially in cases where no infrastructure is available. The main goal in these networks is to provide good data accessibility for participants. Because of the wireless nodes' continuous movement, network partitioning occurs very often. In order to subside the negative effects of this partitioning and improve data accessibility and reliability, data is replicated in nodes other than the original owner of data. This duplication costs in terms of nodes' storage space and energy. Hence, autonomous nodes may behave selfishly in this cooperative process and do not replicate data. This kind of phenomenon is referred to as a strategic situation and is best modeled and analyzed using the game theory concept. In order to address this problem we propose a game theory data replication scheme by using the repeated game concept and prove that it is in the nodes' best interest to cooperate fully in the replication process if our mechanism is used

    An Incentive Mechanism for Cooperative Data Replication in MANETs - A Game Theoretical Approach

    Get PDF
    Wireless ad hoc networks have seen a great deal of attention in the past years, especially in cases where no infrastructure is available. The main goal in these networks is to provide good data accessibility for participants. Because of the wireless nodes’ continuous movement, network partitioning occurs very often. In order to subside the negative effects of this partitioning and improve data accessibility and reliability, data is replicated in nodes other than the original owner of data. This duplication costs in terms of nodes’ storage space and energy. Hence, autonomous nodes may behave selfishly in this cooperative process and do not replicate data. This kind of phenomenon is referred to as a strategic situation and is best modeled and analyzed using the game theory concept. In order to address this problem we propose a game theory data replication scheme by using the repeated game concept and prove that it is in the nodes’ best interest to cooperate fully in the replication process if our mechanism is used

    Data hovering algorithm for improving data retention and data quality in energy-constrained mobile wireless sensor networks

    Get PDF
    A Wireless Sensor Network (WSN) is composed of numerous spatially distributed, low cost, low power and multifunctional sensor nodes which can be used to monitor the surrounding environment. In mobile networks, the sensed data collected by the sensor nodes may move out of the area where it has been gathered (area of origin) with its carrying node. A problem may arise in this situation: when requesting the historical information of a specific area, it is possible that none of the nodes currently located in such area can provide the required information. This thesis addresses the issue of retaining data it its area of origin in an energy-constrained, infrastructure-less mobile Wireless Sensor Network. The concept of this “Data Hovering” has been defined in which the location-based data hovers in its area of origin by transmission between network nodes. Based on this concept, several policies need to be defined as well as considering the constraints of WSN including limited energy and limited transmission bandwidth. The existing related work has then been investigated by examining how it proposed to define the Data Hovering policies, in order to explore the limitations. It has been found that the existing approaches are not well suited to mobile WSN, due to the unique characteristics of WSN. In this thesis, an autonomous Data Hovering algorithm consisting of defined policies has been designed to improve the data retention (data availability) and the quality of the retained data which ensures that the retained data represents different information. The defined Data Hovering algorithm has been implemented in a network simulator and a baseline with simple policies has also been selected in order to be compared with the defined policies. The evaluation in terms of data availability, data quality and energy consumption has then been carried out to analyze the behaviours of the defined algorithm. Finally, the potential future work has been suggested.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore