134 research outputs found

    Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations

    Full text link
    We propose a novel data augmentation for labeled sentences called contextual augmentation. We assume an invariance that sentences are natural even if the words in the sentences are replaced with other words with paradigmatic relations. We stochastically replace words with other words that are predicted by a bi-directional language model at the word positions. Words predicted according to a context are numerous but appropriate for the augmentation of the original words. Furthermore, we retrofit a language model with a label-conditional architecture, which allows the model to augment sentences without breaking the label-compatibility. Through the experiments for six various different text classification tasks, we demonstrate that the proposed method improves classifiers based on the convolutional or recurrent neural networks.Comment: NAACL 201

    Exploiting Rich Syntactic Information for Semantic Parsing with Graph-to-Sequence Model

    Full text link
    Existing neural semantic parsers mainly utilize a sequence encoder, i.e., a sequential LSTM, to extract word order features while neglecting other valuable syntactic information such as dependency graph or constituent trees. In this paper, we first propose to use the \textit{syntactic graph} to represent three types of syntactic information, i.e., word order, dependency and constituency features. We further employ a graph-to-sequence model to encode the syntactic graph and decode a logical form. Experimental results on benchmark datasets show that our model is comparable to the state-of-the-art on Jobs640, ATIS and Geo880. Experimental results on adversarial examples demonstrate the robustness of the model is also improved by encoding more syntactic information.Comment: EMNLP'1

    European Union regulations on algorithmic decision-making and a "right to explanation"

    Get PDF
    We summarize the potential impact that the European Union's new General Data Protection Regulation will have on the routine use of machine learning algorithms. Slated to take effect as law across the EU in 2018, it will restrict automated individual decision-making (that is, algorithms that make decisions based on user-level predictors) which "significantly affect" users. The law will also effectively create a "right to explanation," whereby a user can ask for an explanation of an algorithmic decision that was made about them. We argue that while this law will pose large challenges for industry, it highlights opportunities for computer scientists to take the lead in designing algorithms and evaluation frameworks which avoid discrimination and enable explanation.Comment: presented at 2016 ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, N

    How Much is 131 Million Dollars? Putting Numbers in Perspective with Compositional Descriptions

    Full text link
    How much is 131 million US dollars? To help readers put such numbers in context, we propose a new task of automatically generating short descriptions known as perspectives, e.g. "$131 million is about the cost to employ everyone in Texas over a lunch period". First, we collect a dataset of numeric mentions in news articles, where each mention is labeled with a set of rated perspectives. We then propose a system to generate these descriptions consisting of two steps: formula construction and description generation. In construction, we compose formulae from numeric facts in a knowledge base and rank the resulting formulas based on familiarity, numeric proximity and semantic compatibility. In generation, we convert a formula into natural language using a sequence-to-sequence recurrent neural network. Our system obtains a 15.2% F1 improvement over a non-compositional baseline at formula construction and a 12.5 BLEU point improvement over a baseline description generation
    • …
    corecore