71,510 research outputs found

    Pushdown Control-Flow Analysis for Free

    Full text link
    Traditional control-flow analysis (CFA) for higher-order languages, whether implemented by constraint-solving or abstract interpretation, introduces spurious connections between callers and callees. Two distinct invocations of a function will necessarily pollute one another's return-flow. Recently, three distinct approaches have been published which provide perfect call-stack precision in a computable manner: CFA2, PDCFA, and AAC. Unfortunately, CFA2 and PDCFA are difficult to implement and require significant engineering effort. Furthermore, all three are computationally expensive; for a monovariant analysis, CFA2 is in O(2n)O(2^n), PDCFA is in O(n6)O(n^6), and AAC is in O(n9logn)O(n^9 log n). In this paper, we describe a new technique that builds on these but is both straightforward to implement and computationally inexpensive. The crucial insight is an unusual state-dependent allocation strategy for the addresses of continuation. Our technique imposes only a constant-factor overhead on the underlying analysis and, with monovariance, costs only O(n3) in the worst case. This paper presents the intuitions behind this development, a proof of the precision of this analysis, and benchmarks demonstrating its efficacy.Comment: in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 201

    Effectiveness of segment routing technology in reducing the bandwidth and cloud resources provisioning times in network function virtualization architectures

    Get PDF
    Network Function Virtualization is a new technology allowing for a elastic cloud and bandwidth resource allocation. The technology requires an orchestrator whose role is the service and resource orchestration. It receives service requests, each one characterized by a Service Function Chain, which is a set of service functions to be executed according to a given order. It implements an algorithm for deciding where both to allocate the cloud and bandwidth resources and to route the SFCs. In a traditional orchestration algorithm, the orchestrator has a detailed knowledge of the cloud and network infrastructures and that can lead to high computational complexity of the SFC Routing and Cloud and Bandwidth resource Allocation (SRCBA) algorithm. In this paper, we propose and evaluate the effectiveness of a scalable orchestration architecture inherited by the one proposed within the European Telecommunications Standards Institute (ETSI) and based on the functional separation of an NFV orchestrator in Resource Orchestrator (RO) and Network Service Orchestrator (NSO). Each cloud domain is equipped with an RO whose task is to provide a simple and abstract representation of the cloud infrastructure. These representations are notified of the NSO that can apply a simplified and less complex SRCBA algorithm. In addition, we show how the segment routing technology can help to simplify the SFC routing by means of an effective addressing of the service functions. The scalable orchestration solution has been investigated and compared to the one of a traditional orchestrator in some network scenarios and varying the number of cloud domains. We have verified that the execution time of the SRCBA algorithm can be drastically reduced without degrading the performance in terms of cloud and bandwidth resource costs

    A Multi-objective Perspective for Operator Scheduling using Fine-grained DVS Architecture

    Full text link
    The stringent power budget of fine grained power managed digital integrated circuits have driven chip designers to optimize power at the cost of area and delay, which were the traditional cost criteria for circuit optimization. The emerging scenario motivates us to revisit the classical operator scheduling problem under the availability of DVFS enabled functional units that can trade-off cycles with power. We study the design space defined due to this trade-off and present a branch-and-bound(B/B) algorithm to explore this state space and report the pareto-optimal front with respect to area and power. The scheduling also aims at maximum resource sharing and is able to attain sufficient area and power gains for complex benchmarks when timing constraints are relaxed by sufficient amount. Experimental results show that the algorithm that operates without any user constraint(area/power) is able to solve the problem for most available benchmarks, and the use of power budget or area budget constraints leads to significant performance gain.Comment: 18 pages, 6 figures, International journal of VLSI design & Communication Systems (VLSICS

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL
    • …
    corecore