473,743 research outputs found

    A Taxonomy of Big Data for Optimal Predictive Machine Learning and Data Mining

    Full text link
    Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham's razor non plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.Comment: 18 pages, 2 figures 3 table

    Data Mining Applications in Big Data

    Get PDF
    Data mining is a process of extracting hidden, unknown, but potentially useful information from massive data. Big Data has great impacts on scientific discoveries and value creation. This paper introduces methods in data mining and technologies in Big Data. Challenges of data mining and data mining with big data are discussed. Some technology progress of data mining and data mining with big data are also presented

    The Importance and Problems of Big Data

    Get PDF
    In the era of high-tech we can hear the term Big Data more and more often. This fact indicates that the importance of Big Data constantly increases. This term is also used with related concepts such as Business Intelligence or data mining. But what does that mean

    Apache Mahout’s k-Means vs. fuzzy k-Means performance evaluation

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The emergence of the Big Data as a disruptive technology for next generation of intelligent systems, has brought many issues of how to extract and make use of the knowledge obtained from the data within short times, limited budget and under high rates of data generation. The foremost challenge identified here is the data processing, and especially, mining and analysis for knowledge extraction. As the 'old' data mining frameworks were designed without Big Data requirements, a new generation of such frameworks is being developed fully implemented in Cloud platforms. One such frameworks is Apache Mahout aimed to leverage fast processing and analysis of Big Data. The performance of such new data mining frameworks is yet to be evaluated and potential limitations are to be revealed. In this paper we analyse the performance of Apache Mahout using large real data sets from the Twitter stream. We exemplify the analysis for the case of two clustering algorithms, namely, k-Means and Fuzzy k-Means, using a Hadoop cluster infrastructure for the experimental study.Peer ReviewedPostprint (author's final draft
    corecore