5,613,946 research outputs found
Learning Active Learning from Data
In this paper, we suggest a novel data-driven approach to active learning
(AL). The key idea is to train a regressor that predicts the expected error
reduction for a candidate sample in a particular learning state. By formulating
the query selection procedure as a regression problem we are not restricted to
working with existing AL heuristics; instead, we learn strategies based on
experience from previous AL outcomes. We show that a strategy can be learnt
either from simple synthetic 2D datasets or from a subset of domain-specific
data. Our method yields strategies that work well on real data from a wide
range of domains
Q-learning with censored data
We develop methodology for a multistage decision problem with flexible number
of stages in which the rewards are survival times that are subject to
censoring. We present a novel Q-learning algorithm that is adjusted for
censored data and allows a flexible number of stages. We provide finite sample
bounds on the generalization error of the policy learned by the algorithm, and
show that when the optimal Q-function belongs to the approximation space, the
expected survival time for policies obtained by the algorithm converges to that
of the optimal policy. We simulate a multistage clinical trial with flexible
number of stages and apply the proposed censored-Q-learning algorithm to find
individualized treatment regimens. The methodology presented in this paper has
implications in the design of personalized medicine trials in cancer and in
other life-threatening diseases.Comment: Published in at http://dx.doi.org/10.1214/12-AOS968 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Estimating Learning Models with Experimental Data
We study the statistical properties of three estimation methods for a model of learning that is often tted to experimental data: quadratic deviation measures without unobserved heterogeneity, and maximum likelihood with and without unobserved heterogeneity. After discussing identi cation issues, we show that the estimators are consistent and provide their asymptotic distribution.
Using Monte Carlo simulations, we show that ignoring unobserved heterogeneity can lead to seriously biased estimations in samples which have the typical length of actual experiments. Better small sample properties are obtained if unobserved heterogeneity is introduced. That is, rather than estimating
the parameters for each individual, the individual parameters are
considered random variables, and the distribution of those random variables
is estimated
Towards Meta-learning over Data Streams
Modern society produces vast streams of data. Many stream mining algorithms have been developed to capture general trends in these streams, and make predictions for future observations, but relatively little is known about which algorithms perform particularly well on which kinds of data. Moreover, it is possible that the characteristics of the data change over time, and thus that a different algorithm should be recommended at various points in time. Figure 1 illustrates this. As such, we are dealing with the Algorithm Selection Problem [9] in a data stream setting. Based on measurable meta-features from a window of observations from a data stream, a meta-algorithm is built that predicts the best classifier for the next window. Our results show that this meta-algorithm is competitive with state-of-the art data streaming ensembles, such as OzaBag [6], OzaBoost [6] and Leveraged Bagging [3]
- …
