304,364 research outputs found

    Improving acoustic vehicle classification by information fusion

    No full text
    We present an information fusion approach for ground vehicle classification based on the emitted acoustic signal. Many acoustic factors can contribute to the classification accuracy of working ground vehicles. Classification relying on a single feature set may lose some useful information if its underlying sound production model is not comprehensive. To improve classification accuracy, we consider an information fusion diagram, in which various aspects of an acoustic signature are taken into account and emphasized separately by two different feature extraction methods. The first set of features aims to represent internal sound production, and a number of harmonic components are extracted to characterize the factors related to the vehicleā€™s resonance. The second set of features is extracted based on a computationally effective discriminatory analysis, and a group of key frequency components are selected by mutual information, accounting for the sound production from the vehicleā€™s exterior parts. In correspondence with this structure, we further put forward a modifiedBayesian fusion algorithm, which takes advantage of matching each specific feature set with its favored classifier. To assess the proposed approach, experiments are carried out based on a data set containing acoustic signals from different types of vehicles. Results indicate that the fusion approach can effectively increase classification accuracy compared to that achieved using each individual features set alone. The Bayesian-based decision level fusion is found fusion is found to be improved than a feature level fusion approac

    Magnetic and radar sensing for multimodal remote health monitoring

    Get PDF
    With the increased life expectancy and rise in health conditions related to aging, there is a need for new technologies that can routinely monitor vulnerable people, identify their daily pattern of activities and any anomaly or critical events such as falls. This paper aims to evaluate magnetic and radar sensors as suitable technologies for remote health monitoring purpose, both individually and fusing their information. After experiments and collecting data from 20 volunteers, numerical features has been extracted in both time and frequency domains. In order to analyse and verify the validation of fusion method for different classifiers, a Support Vector Machine with a quadratic kernel, and an Artificial Neural Network with one and multiple hidden layers have been implemented. Furthermore, for both classifiers, feature selection has been performed to obtain salient features. Using this technique along with fusion, both classifiers can detect 10 different activities with an accuracy rate of approximately 96%. In cases where the user is unknown to the classifier, an accuracy of approximately 92% is maintained

    Quantifying the Effect of Registration Error on Spatio-Temporal Fusion

    Get PDF
    It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate resolution imaging spectroradiometer (MODIS) data have fine temporal resolution, but coarse spatial resolution. One solution to this problem is to blend the two types of data using spatio-temporal fusion, creating images with both fine temporal and fine spatial resolution. However, reliable geometric registration of images acquired by different sensors is a prerequisite of spatio-temporal fusion. Due to the potentially large differences between the spatial resolutions of the images to be fused, the geometric registration process always contains some degree of uncertainty. This article analyzes quantitatively the influence of geometric registration error on spatio-temporal fusion. The relationship between registration error and the accuracy of fusion was investigated under the influence of different temporal distances between images, different spatial patterns within the images and using different methods (i.e., spatial and temporal adaptive reflectance fusion model (STARFM), and Fit-FC; two typical spatio-temporal fusion methods). The results show that registration error has a significant impact on the accuracy of spatio-temporal fusion; as the registration error increased, the accuracy decreased monotonically. The effect of registration error in a heterogeneous region was greater than that in a homogeneous region. Moreover, the accuracy of fusion was not dependent on the temporal distance between images to be fused, but rather on their statistical correlation. Finally, the Fit-FC method was found to be more accurate than the STARFM method, under all registration error scenarios. Ā© 2008-2012 IEEE

    Classification accuracy increase using multisensor data fusion

    Get PDF
    The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to other established methods illustrates the advantage in the classification accuracy for many classes such as buildings, low vegetation, sport objects, forest, roads, rail roads, etc

    A Probabilistic Data Fusion Modeling Approach for Extracting True Values from Uncertain and Conflicting Attributes

    Get PDF
    Real-world data obtained from integrating heterogeneous data sources are often multi-valued, uncertain, imprecise, error-prone, outdated, and have different degrees of accuracy and correctness. It is critical to resolve data uncertainty and conflicts to present quality data that reflect actual world values. This task is called data fusion. In this paper, we deal with the problem of data fusion based on probabilistic entity linkage and uncertainty management in conflict data. Data fusion has been widely explored in the research community. However, concerns such as explicit uncertainty management and on-demand data fusion, which can cope with dynamic data sources, have not been studied well. This paper proposes a new probabilistic data fusion modeling approach that attempts to find true data values under conditions of uncertain or conflicted multi-valued attributes. These attributes are generated from the probabilistic linkage and merging alternatives of multi-corresponding entities. Consequently, the paper identifies and formulates several data fusion cases and sample spaces that require further conditional computation using our computational fusion method. The identification is established to fit with a real-world data fusion problem. In the real world, there is always the possibility of heterogeneous data sources, the integration of probabilistic entities, single or multiple truth values for certain attributes, and different combinations of attribute values as alternatives for each generated entity. We validate our probabilistic data fusion approach through mathematical representation based on three data sources with different reliability scores. The validity of the approach was assessed via implementation into our probabilistic integration system to show how it can manage and resolve different cases of data conflicts and inconsistencies. The outcome showed improved accuracy in identifying true values due to the association of constructive evidence

    Guiding CTC Posterior Spike Timings for Improved Posterior Fusion and Knowledge Distillation

    Full text link
    Conventional automatic speech recognition (ASR) systems trained from frame-level alignments can easily leverage posterior fusion to improve ASR accuracy and build a better single model with knowledge distillation. End-to-end ASR systems trained using the Connectionist Temporal Classification (CTC) loss do not require frame-level alignment and hence simplify model training. However, sparse and arbitrary posterior spike timings from CTC models pose a new set of challenges in posterior fusion from multiple models and knowledge distillation between CTC models. We propose a method to train a CTC model so that its spike timings are guided to align with those of a pre-trained guiding CTC model. As a result, all models that share the same guiding model have aligned spike timings. We show the advantage of our method in various scenarios including posterior fusion of CTC models and knowledge distillation between CTC models with different architectures. With the 300-hour Switchboard training data, the single word CTC model distilled from multiple models improved the word error rates to 13.7%/23.1% from 14.9%/24.1% on the Hub5 2000 Switchboard/CallHome test sets without using any data augmentation, language model, or complex decoder.Comment: Accepted to Interspeech 201
    • ā€¦
    corecore