301,642 research outputs found

    Data center design & enterprise networking

    Get PDF
    Today’s enterprise networks and data centers have become very complex and have completely integrated themselves into every facet of their represented organization. Organizations require Internet facing services and applications to be available at any part of the day or night. These organizations have realized that with centralized computing and highly available components, their technological presence with customers can be greatly enhanced. The creation of an infrastructure supporting such high availability takes numerous components and resources to function optimally. When an organization makes the decision to design a data center, they utilize resources to provide insight into what components to deploy. Much of this information is based off of recommendations made by third party vendors or limited past experiences. This research provides a course offering as a solution to help provide students with the information to design and comprehend the major components within a modern data center. The information included in the course offering has been compared with industry accepted standards and various other resources to provide reliable and accurate information. Course topics have been architected around eight major topics. These topics covered are network design, electrical systems, HVAC (Heating, Ventilation, and Air Conditioning) systems, security, management, redundancy, disaster recovery and site planning. The information contained within the lectures has been compiled from multiple sources to provide a single location for information. Furthermore, the course offering will utilize class discussions, case study analysis and activities to re-enforce key points. Providing such a course for students to learn about data center components will provide organizations with the ability to rely less on outside information and design scalable data centers that can provide years of growth

    Content Defined Optical Network

    Get PDF
    Optical interconnection has become one of the key technologies to adapt the needs of large-scale data center networking with the advantages of large capacity, high bandwidth, and high efficiency. Data center optical interconnection has the characteristics of resource and technology heterogeneity. Its networking and control face enormous challenges for the increasing number of users with a high level quality of service requirements. Around different scenarios, there are a series of key networking and control problems in data center optical interconnection, such as multiple layers and stratums resources optimization in inter-data center, and time-aware resource scheduling in intra-data center. To solve these problems and challenges, this chapter mainly researches on content defined optical networking and integrated control for data center. For networking of vertical “multi-layer-carried” and horizontal “heterogeneous-cross-stratum”, the chapter launches research work around application scenarios about inter-data center optical interconnection with optical network, and intra-data center. The model architecture, implementation mechanism and control strategy are analyzed and demonstrated on the experiment and simulation platform of data center optical interconnection. This chapter will provide important references for future diverse applications of data center optical interconnection and software defined networking and control in practice

    Data center resilience assessment : storage, networking and security.

    Get PDF
    Data centers (DC) are the core of the national cyber infrastructure. With the incredible growth of critical data volumes in financial institutions, government organizations, and global companies, data centers are becoming larger and more distributed posing more challenges for operational continuity in the presence of experienced cyber attackers and occasional natural disasters. The main objective of this research work is to present a new methodology for data center resilience assessment, this methodology consists of: • Define Data center resilience requirements. • Devise a high level metric for data center resilience. • Design and develop a tool to validate and the metric. Since computer networks are an important component in the data center architecture, this research work was extended to investigate computer network resilience enhancement opportunities within the area of routing protocols, redundancy, and server load to minimize the network down time and increase the time period of resisting attacks. Data center resilience assessment is a complex process as it involves several aspects such as: policies for emergencies, recovery plans, variation in data center operational roles, hosted/processed data types and data center architectures. However, in this dissertation, storage, networking and security are emphasized. The need for resilience assessment emerged due to the gap in existing reliability, availability, and serviceability (RAS) measures. Resilience as an evaluation metric leads to better proactive perspective in system design and management. The proposed Data center resilience assessment portal (DC-RAP) is designed to easily integrate various operational scenarios. DC-RAP features a user friendly interface to assess the resilience in terms of performance analysis and speed recovery by collecting the following information: time to detect attacks, time to resist, time to fail and recovery time. Several set of experiments were performed, results obtained from investigating the impact of routing protocols, server load balancing algorithms on network resilience, showed that using particular routing protocol or server load balancing algorithm can enhance network resilience level in terms of minimizing the downtime and ensure speed recovery. Also experimental results for investigating the use social network analysis (SNA) for identifying important router in computer network showed that the SNA was successful in identifying important routers. This important router list can be used to redundant those routers to ensure high level of resilience. Finally, experimental results for testing and validating the data center resilience assessment methodology using the DC-RAP showed the ability of the methodology quantify data center resilience in terms of providing steady performance, minimal recovery time and maximum resistance-attacks time. The main contributions of this work can be summarized as follows: • A methodology for evaluation data center resilience has been developed. • Implemented a Data Center Resilience Assessment Portal (D$-RAP) for resilience evaluations. • Investigated the usage of Social Network Analysis to Improve the computer network resilience

    UPS system: How can future technology and topology improve the energy efficiency in data centers?

    Get PDF
    A Data Center can consist of a large group of networked servers and associated power distribution, networking, and cooling equipment. All these applications consume enormous amounts of energy which result in a significant increase in energy inefficiency problems. One of the causes of Data Center energy inefficiency power distribution is from the uninterruptible power supply (UPS). The UPS system is an alternate or backup source of power linking between mains power supply and end critical loads in order to provide back-up power and protection for the sensitive load. This study attempts to answer the question of how can future UPS topology and technology improve the efficiency of Data Center. In order to analyze the impact of different UPS technologies and their operating efficiencies, a model for a medium size Data Centre is developed, and load schedules and worked schematics were created to analyze and test the components of each of the UPS system topologies

    Modeling of the Space Station Freedom data management system

    Get PDF
    The Data Management System (DMS) is the information and communications system onboard Space Station Freedom (SSF). Extensive modeling of the DMS is being conducted throughout NASA to aid in the design and development of this vital system. Activities discussed at NASA Ames Research Center to model the DMS network infrastructure are discussed with focus on the modeling of the Fiber Distributed Data Interface (FDDI) token-ring protocol and experimental testbedding of networking aspects of the DMS

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram
    • …
    corecore