541 research outputs found

    Preprint: Open Source Compiling for V1Model RMT Switch: Making Data Center Networking Innovation Accessible

    Full text link
    Very few of the innovations in deep networking have seen data center scale implementation. Because the Data Center network's extreme scale performance requires hardware implementation, which is only accessible to a few. However, the emergence of reconfigurable match-action table (RMT) paradigm-based switches have finally opened up the development life cycle of data plane devices. The P4 language is the dominant language choice for programming these devices. Now, Network operators can implement the desired feature over white box RMT switches. The process involves an innovator writing new algorithms in the P4 language and getting them compiled for the target hardware. However, there is still a roadblock. After designing an algorithm, the P4 program's compilation technology is not fully open-source. Thus, it is very difficult for an average researcher to get deep insight into the performance of his/her innovation when executed at the silicon level. There is no open-source compiler backend available for this purpose. Proprietary compiler backends provided by different hardware vendors are available for this purpose. However, they are closed-source and do not provide access to the internal mapping mechanisms. Which inhibits experimenting with new mapping algorithms and innovative instruction sets for reconfigurable match-action table architecture. This paper describes our work toward an open-source compiler backend for compiling P416 targeted for the V1Model architecture-based programmable switches.Comment: arXiv admin note: substantial text overlap with arXiv:2208.1289

    Path based load balancing for data center networks using SDN

    Get PDF
    Due to the increase in the number of users on the internet and the number of applications that is available in the cloud makes Data Center Networking (DCN) has the backbone for computing. These data centre requires high operational cost and also experience the link failures and congestions often. Hence the solution is to use Software Defined Networking (SDN) based load balancer which improves the efficiency of the network by distributing the traffic across multiple paths to optimize the efficiency of the network. Traditional load balancers are very expensive and inflexible. These SDN load balancers do not require costly hardware and can be programmed, which it makes it easier to implement user-defined algorithms and load balancing strategies. In this paper, we have proposed an efficient load balancing technique by considering different parameters to maintain the load efficiently using Open FlowSwitches connected to ONOS controller
    • …
    corecore