3,996 research outputs found

    Fuzzy System to Assess Dangerous Driving: A Multidisciplinary Approach

    Get PDF
    Dangerous driving can cause accidents, injuries and loss of life. An efficient assessment helps to identify the absence or degree of dangerous driving to take the appropriate decisions while driving. Previous studies assess dangerous driving through two approaches: (i) using electronic devices or sensors that provide objective variables (acceleration, turns and speed), and (ii) analyzing responses to questionnaires from behavioral science that provide subjective variables (driving thoughts, opinions and perceptions from the driver). However, we believe that a holistic and more realistic assessment requires a combination of both types of variables. Therefore, we propose a three-phase fuzzy system with a multidisciplinary (computer science and behavioral sciences) approach that draws on the strengths of sensors embedded in smartphones and questionnaires to evaluate driver behavior and social desirability. Our proposal combines objective and subjective variables while mitigating the weaknesses of the disciplines used (sensor reading errors and lack of honesty from respondents, respectively). The methods used are of proven reliability in each discipline, and their outputs feed a combined fuzzy system used to handle the vagueness of the input variables, obtaining a personalized result for each driver. The results obtained using the proposed system in a real scenario were efficient at 84.21%, and were validated with mobility experts’ opinions. The presented fuzzy system can support intelligent transportation systems, driving safety, or personnel selection

    Analysis and development of a novel algorithm for the in-vehicle hand-usage of a smartphone

    Full text link
    Smartphone usage while driving is unanimously considered to be a really dangerous habit due to strong correlation with road accidents. In this paper, the problem of detecting whether the driver is using the phone during a trip is addressed. To do this, high-frequency data from the triaxial inertial measurement unit (IMU) integrated in almost all modern phone is processed without relying on external inputs so as to provide a self-contained approach. By resorting to a frequency-domain analysis, it is possible to extract from the raw signals the useful information needed to detect when the driver is using the phone, without being affected by the effects that vehicle motion has on the same signals. The selected features are used to train a Support Vector Machine (SVM) algorithm. The performance of the proposed approach are analyzed and tested on experimental data collected during mixed naturalistic driving scenarios, proving the effectiveness of the proposed approach

    Applying Machine Learning for Improving Performance Classification on Driving Behavior

    Get PDF
    Traffic accident is a very difficult problem to handle on a large scale in a country. Indonesia is one of the most populated, developing countries that use vehicles for daily activities as its main transportation.  It is also the country with the largest number of car users in Southeast Asia, so driving safety needs to be considered. Using machine learning classification method to determine whether a driver is driving safely or not can help reduce the risk of driving accidents. We created a detection system to classify whether the driver is driving safely or unsafely using trip sensor data, which include Gyroscope, Acceleration, and GPS. The classification methods used in this study are Random Forest (RF) classification algorithm, Support Vector Machine (SVM), and Multilayer Perceptron (MLP) by improving data preprocessing using feature extraction and oversampling methods. This study shows that RF has the best performance with 98% accuracy, 98% precision, and 97% sensitivity using the proposed preprocessing stages compared to SVM or MLP

    Risk assessment of vehicle cornering events in GNSS data driven insurance telematics

    Full text link
    We propose a framework for the detection of dangerous vehicle cornering events, based on statistics related to the no-sliding and no-rollover conditions. The input variables are estimated using an unscented Kalman filter applied to global navigation satellite system (GNSS) measurements of position, speed, and bearing. The resulting test statistic is evaluated in a field study where three smartphones are used as measurement probes. A general framework for performance evaluation and estimator calibration is presented as depending on a generic loss function. Further, we introduce loss functions designed for applications aiming to either minimize the number of missed detections and false alarms, or to estimate the risk level in each cornering event. Finally, performance characteristics of the estimator is presented as depending on the detection threshold, and on design parameters describing the driving behavior. Since the estimation only uses GNSS measurements, the framework is particularly well-suited for smartphone-based insurance telematics applications, aiming to avoid the logistic and monetary costs associated with e.g., on-board-diagnostics or black-box dependent solutions. The design of the estimation algorithm allows for instant feedback to be given to the driver, and hence, supports the inclusion of real time value added services in usage-basedinsurance programs.QC 20150316</p

    Seamless Interactions Between Humans and Mobility Systems

    Full text link
    As mobility systems, including vehicles and roadside infrastructure, enter a period of rapid and profound change, it is important to enhance interactions between people and mobility systems. Seamless human—mobility system interactions can promote widespread deployment of engaging applications, which are crucial for driving safety and efficiency. The ever-increasing penetration rate of ubiquitous computing devices, such as smartphones and wearable devices, can facilitate realization of this goal. Although researchers and developers have attempted to adapt ubiquitous sensors for mobility applications (e.g., navigation apps), these solutions often suffer from limited usability and can be risk-prone. The root causes of these limitations include the low sensing modality and limited computational power available in ubiquitous computing devices. We address these challenges by developing and demonstrating that novel sensing techniques and machine learning can be applied to extract essential, safety-critical information from drivers natural driving behavior, even actions as subtle as steering maneuvers (e.g., left-/righthand turns and lane changes). We first show how ubiquitous sensors can be used to detect steering maneuvers regardless of disturbances to sensing devices. Next, by focusing on turning maneuvers, we characterize drivers driving patterns using a quantifiable metric. Then, we demonstrate how microscopic analyses of crowdsourced ubiquitous sensory data can be used to infer critical macroscopic contextual information, such as risks present at road intersections. Finally, we use ubiquitous sensors to profile a driver’s behavioral patterns on a large scale; such sensors are found to be essential to the analysis and improvement of drivers driving behavior.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163127/1/chendy_1.pd
    • …
    corecore