5 research outputs found

    Evaluation of damage in structures using vibration-based analyses

    Get PDF
    Composite materials are supplanting conventional metals in aerospace, automotive, civil and marine industries in recent times. This is mainly due to their high strength and light weight characteristics. But with all the advantages they have, they are prone to delamination or matrix cracking. These types of damage are often invisible and if undetected, could lead to appalling failures of structures. Although there are systems to detect such damage, the criticality assessment and prognosis of the damage is often more difficult to achieve. The research study conducted here primarily deals with the structural health monitoring of composite materials by analysing vibration signatures acquired from a laser vibrometer. The primary aim of the project is to develop a vibration based structural health monitoring (SHM) method for detecting flaws such as delamination within the composite be ams. Secondly, the project emphasises on the method's ability to recognise the location and severity of the damage within the structure. The system proposed relies on the examination of the displacement mode shapes acquired from the composite beams using the laser vibrometer and later processing them to curvature mode shapes for damage identification and characterization. Other identification techniques such as a C-scan has been applied to validate the location and size of the defects with the structures tested. The output from these plots enabled the successful identification of both the location and extent of damage within the structure with an accuracy of 96.5%. In addition to this, this project also introduces a method to experimentally compute the critical stress intensity factor, KIC for the composite beam. Based on this, a technique for extending the defect has been proposed and validated using concepts of fatigue and fracture mechanics. A composite specimen with a 40 mm wide delamination embedded wit hin was loaded under fatigue conditions and extension of the defect by 4mm on either side of the specimen's loading axis was achieved satisfactorily. The experimental procedure to extend the defect using fatigue was validated using the SLV system. Displacement and Curvature mode shapes were acquired post-fatigue crack extension. Upon analysing and comparing the displacement and curvature mode shapes before and after crack extension, the extended delamination was identified satisfactorily

    Curvature mode shape analyses of damage in structures

    Get PDF
    In recent years, the use of composite structures in engineering application has increased. This is mainly due to their special advantages such as high structural performance, high corrosion resistance, tolerance of temperature; extreme fatigue resistance and high strength/weight ratio. However, some disorders like fibre breakage, matrix cracking and delaminations could be caused by operational loading, aging, chemical attack, mechanical vibration, changing of ambient conditions and shock etc. during the service. Although these disorders are hardly visible, they can severely reduce the mechanical properties and the load carrying capability of the composite structure. The aim of this research project is to develop a Vibration-based Structural Health Monitoring (SHM) method for carbon/epoxy composite beam specimens with the embedded artificial delaminations. The Laser Vibrometer Machine was used to excite the beams and gather the responses of the structure to the excitations. The physical properties such as frequency, velocity, mode shapes, and damping of the defective beams were measured. By using a C-SCAN machine, the accuracy of the positions of the delaminations was verified to be about 95% is accurate. Curvature mode shapes as a scalable damage detection parameter is calculated using an analytical model based on the Heaviside step function and the Central Difference Approximation (CDA) technique. The vibration-based damage detection method is then obtained using the difference between curvature mode shapes of the intact and damaged carbon/epoxy beams. An accurate prediction of 90% was attained. These results are proposed and discussed in detail in this study. Finally, the Fatigue Crack Propagation Test was applied on Samples with embedded delamination to extend the crack. The ASTM E399-90 standard is used for the experiment and a careful fatigue crack growth routine was designed and implemented to advance the delamination in a controlled manner. The total extension of 17 mm was observed with Microscope. The total propagation as determined by the curvature mode plots was 17.84 mm

    Development of microstrip patch antenna strain sensors for wireless structural health monitoring

    Get PDF
    Current developments in the design and manufacturing of composite materials along with their superior mechanical characteristics have resulted in the extensive use of these materials in advanced structures for aerospace industry. In recent years, several different attempts have been made to develop Structural Health Monitoring (SHM) systems and, as a result, various SHM techniques have been introduced. Currently, however, none of these techniques are capable of monitoring the condition of complex operational aerospace structures. The number of sensors and its wiring pose significant problems because of the increased signal processing demand and heightened system unreliability, respectively. Current available wireless sensors are not efficient enough to be used in SHM for aerospace structures primarily because of cost and battery power limitations. The aim in this research was to investigate the feasibility of using microstrip patch antennas as a new type of strain sensor and develop the required techniques for wireless strain measurement without these aforementioned problems. Analytical, computational (finite element analysis) and experimental tests conducted in this research demonstrated that microstrip patch antennas can be used to reliably measure strain. As a result of investigating different microstrip patch antenna configurations in this study, novel antenna sensors were designed, simulated and tested. These antenna sensors (circular, slotted circular and meandered circular microstrip patch antennas) showed good sensitivity with strain with acceptable linearity between strain and the shift in its resonant frequency. In particular, the meandered circular microstrip patch antenna was shown to have localised and omni-directional strain measurement capabilities. In this research, it was shown that by using carefully selected techniques, the resonant frequency of circular microstrip patch antennas can be detected and measured wirelessly. As a result, the feasibility of wireless strain measurement for different aerospace materials (aluminium, carbon fibre reinforced polymer and glass fibre reinforced polymer) was demonstrated. Several diagnostic-related parameters here were investigated and a pivotal parameter discovered was the distance between the sensor and the reader. This technology can be further developed to be used in SHM techniques for wireless measurement of strain and possibly wireless detection of damage in aerospace structures

    Damage detection in composites using vibration signatures

    No full text
    Composite materials are supplanting conventional metals in aerospace, automotive, civil and marine industries in modern times. However, despite these advantageous properties, they are prone to delamination or matrix cracking. Thus, necessitating the early detection of the crack or flaw before it initiates into a serious defect. An offline approach was commonly used where in the parts examined away from service/operation. This not only consumed a lot of time but risked damage to the part during operation and handling. A detailed understanding of the various proven methods and techniques and their applicability in the analysis of vibration signatures obtained from damaged structures under dynamic conditions is essential to develop a reliable Structural Health Monitoring System (SHMS). This paper includes Vibration based damage detection testing on Carbon/Epoxy composite beams. Such composites are commonly used in the aerospace and marine industry. This material type is gaining acceptance not only in the aerospace industry but also in the automotive and construction industries. The paper reports the processing of the vibration signatures from healthy and damaged composite beams upon excitation and analysis of the mode shapes acquired. The study comprises of testing carbon/epoxy composite beams with various embedded delaminations with a mechanical actuator and a scanning laser vibrometer (SLV) as a sensor for recording the frequency response and analysing the acquired signatures based on Displacement and Curvature Mode Shapes

    Damage detection in composites using vibration signatures and mode shapes

    No full text
    Composite materials are supplanting conventional metals in aerospace, automotive, civil and marine industries in modern times. However, despite these advantageous properties, they are prone to delamination or matrix cracking. Thus, necessitating the early detection of the crack or flaw before it initiates into a serious defect. An offline approach was commonly used where in the parts examined away from service/operation. This not only consumed a lot of time but risked damage to the part during operation and handling. A detailed understanding of the various proven methods and techniques and their applicability in the analysis of vibration signatures obtained from damaged structures under dynamic conditions is essential to develop a reliable Structural Health Monitoring System (SHMS). This paper includes Vibration based damage detection testing on Carbon/Epoxy composite beams. Such composites are commonly used in the aerospace and marine industry. This material type is gaining acceptance not only in the aerospace industry but also in the automotive and construction industries. The paper reports the processing of the vibration signatures from healthy and damaged composite beams upon excitation and analysis of the mode shapes acquired. The study comprises of testing carbon/epoxy composite beams with various embedded delaminations with a mechanical actuator and a scanning laser vibrometer (SLV) as a sensor for recording the frequency response and analysing the acquired signatures based on Displacement and Curvature Mode Shapes
    corecore