965,855 research outputs found

    A new mechanical structural damage feature index based on HHT

    Get PDF
    A new damage feature index is presented for the structural health monitoring based on Hilbert-Huang transform (HHT). The energy marginal spectrum of the dynamic signal is used to construct damage characteristic parameter, which can reflect the signal energy variation and benefit the structural damage detection. A sinusoidal wave with frequency change and a composite plate vibration experiment with pre-defined damage are designed to verify the effectiveness of characteristic parameter in damage detection. Results obtained from simulation and test show that the extracted non-model-based damage feature index is available and sensitive in damage detection of time-varying system.Peer Reviewe

    Perturbation Analysis for Robust Damage Detection with Application to Multifunctional Aircraft Structures

    Get PDF
    The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.FUI MSIE (Pole Astech

    Underlying modal data issues for detecting damage in truss structures

    Get PDF
    Independent of the modal identification techniques employed for damage detection, use of measured modal data limits the expectations for damage location. These limitations are examined using the distribution of modal strain energy and the sensitivity of the frequency and mode shapes to structural stiffness changes. For given measured modal information of specific accuracy, this examination reveals the following: (1) damage detection is feasible for members that contribute significantly to the strain energy of the measured modes, (2) the modes which are most effective in detecting damage to certain critical members can be identified, and (3) a relationship can be drawn between the accuracy of the measured modes and frequencies and damage detection feasibility

    Correlating low energy impact damage with changes in modal parameters: diagnosis tools and FE validation

    Get PDF
    This paper presents a basic experimental technique and simplified FE based models for the detection, localization and quantification of impact damage in composite beams around the BVID level. Detection of damage is carried out by shift in modal parameters. Localization of damage is done by a topology optimization tool which showed that correct damage locations can be found rather efficiently for low-level damage. The novelty of this paper is that we develop an All In One (AIO) package dedicated to impact identification by modal analysis. The damaged zones in the FE models are updated by reducing the most sensitive material property in order to improve the experimental/numerical correlation of the frequency response functions. These approximate damage models(in term of equivalent rigidity) give us a simple degradation factor that can serve as a warning regarding structure safety

    Smart EMI monitoring of thin composite structures

    Get PDF
    This paper presents a structural health monitoring (SHM) method for in-situ damage detection and localization in carbon fibre reinforced plates (CFRP). The detection is achieved using the electromechanical impedance (EMI) technique employing piezoelectric transducers as high-frequency modal sensors. Numerical simulations based on the finite element method are carried out so as to simulate more than a hundred damage scenarios. Damage metrics are then used to quantify and detect changes between the electromechanical impedance spectrum of a pristine and damaged structure. The localization process relies on artificial neural networks (ANN) whose inputs are derived from a principal component analysis of the damage metrics. It is shown that the resulting ANN can be used as a tool to predict the in-plane position of a single damage in a laminated composite plate

    Bridge damage detection based on vibration data: past and new developments

    Get PDF
    Overtime, bridge condition declines due to a number of degradation processes such as creep, corrosion, and cyclic loading, among others. Traditionally, vibration-based damage detection techniques in bridges have focused on monitoring changes to modal parameters. These techniques can often suffer to their sensitivity to changes in environmental and operational conditions, mistaking them as structural damage. Recent research has seen the emergence of more advanced computational techniques that not only allow the assessment of noisier and more complex data but also allow research to veer away from monitoring changes in modal parameters alone. This paper presents a review of the current state-of-the-art developments in vibration-based damage detection in small to medium span bridges with particular focus on the utilization of advanced computational methods that avoid traditional damage detection pitfalls. A case study based on the S101 bridge is also presented to test the damage sensitivity to a chosen methodology.Peer ReviewedPostprint (published version
    corecore