4,489 research outputs found
A Survey of Memristive Threshold Logic Circuits
In this paper, we review the different memristive threshold logic (MTL)
circuits that are inspired from the synaptic action of flow of
neurotransmitters in the biological brain. Brain like generalisation ability
and area minimisation of these threshold logic circuits aim towards crossing
the Moores law boundaries at device, circuits and systems levels.Fast switching
memory, signal processing, control systems, programmable logic, image
processing, reconfigurable computing, and pattern recognition are identified as
some of the potential applications of MTL systems. The physical realization of
nanoscale devices with memristive behaviour from materials like TiO2,
ferroelectrics, silicon, and polymers has accelerated research effort in these
application areas inspiring the scientific community to pursue design of high
speed, low cost, low power and high density neuromorphic architectures
Everything You Wish to Know About Memristors But Are Afraid to Ask
This paper classifies all memristors into three classes called Ideal, Generic, or Extended memristors. A subclass of Generic memristors is related to Ideal memristors via a one-to-one mathematical transformation, and is hence called Ideal Generic memristors. The concept of non-volatile memories is defined and clarified with illustrations. Several fundamental new concepts, including Continuum-memory memristor, POP (acronym for Power-Off Plot), DC V-I Plot, and Quasi DC V-I Plot, are rigorously defined and clarified with colorful illustrations. Among many colorful pictures the shoelace DC V-I Plot stands out as both stunning and illustrative. Even more impressive is that this bizarre shoelace plot has an exact analytical representation via 2 explicit functions of the state variable, derived by a novel parametric approach invented by the author
Memcapacitive Devices in Logic and Crossbar Applications
Over the last decade, memristive devices have been widely adopted in
computing for various conventional and unconventional applications. While the
integration density, memory property, and nonlinear characteristics have many
benefits, reducing the energy consumption is limited by the resistive nature of
the devices. Memcapacitors would address that limitation while still having all
the benefits of memristors. Recent work has shown that with adjusted parameters
during the fabrication process, a metal-oxide device can indeed exhibit a
memcapacitive behavior. We introduce novel memcapacitive logic gates and
memcapacitive crossbar classifiers as a proof of concept that such applications
can outperform memristor-based architectures. The results illustrate that,
compared to memristive logic gates, our memcapacitive gates consume about 7x
less power. The memcapacitive crossbar classifier achieves similar
classification performance but reduces the power consumption by a factor of
about 1,500x for the MNIST dataset and a factor of about 1,000x for the
CIFAR-10 dataset compared to a memristive crossbar. Our simulation results
demonstrate that memcapacitive devices have great potential for both Boolean
logic and analog low-power applications
Towards Accurate and High-Speed Spiking Neuromorphic Systems with Data Quantization-Aware Deep Networks
Deep Neural Networks (DNNs) have gained immense success in cognitive
applications and greatly pushed today's artificial intelligence forward. The
biggest challenge in executing DNNs is their extremely data-extensive
computations. The computing efficiency in speed and energy is constrained when
traditional computing platforms are employed in such computational hungry
executions. Spiking neuromorphic computing (SNC) has been widely investigated
in deep networks implementation own to their high efficiency in computation and
communication. However, weights and signals of DNNs are required to be
quantized when deploying the DNNs on the SNC, which results in unacceptable
accuracy loss. %However, the system accuracy is limited by quantizing data
directly in deep networks deployment. Previous works mainly focus on weights
discretize while inter-layer signals are mainly neglected. In this work, we
propose to represent DNNs with fixed integer inter-layer signals and
fixed-point weights while holding good accuracy. We implement the proposed DNNs
on the memristor-based SNC system as a deployment example. With 4-bit data
representation, our results show that the accuracy loss can be controlled
within 0.02% (2.3%) on MNIST (CIFAR-10). Compared with the 8-bit dynamic
fixed-point DNNs, our system can achieve more than 9.8x speedup, 89.1% energy
saving, and 30% area saving.Comment: 6 pages, 4 figure
Memristive excitable cellular automata
The memristor is a device whose resistance changes depending on the polarity
and magnitude of a voltage applied to the device's terminals. We design a
minimalistic model of a regular network of memristors using
structurally-dynamic cellular automata. Each cell gets info about states of its
closest neighbours via incoming links. A link can be one 'conductive' or
'non-conductive' states. States of every link are updated depending on states
of cells the link connects. Every cell of a memristive automaton takes three
states: resting, excited (analog of positive polarity) and refractory (analog
of negative polarity). A cell updates its state depending on states of its
closest neighbours which are connected to the cell via 'conductive' links. We
study behaviour of memristive automata in response to point-wise and spatially
extended perturbations, structure of localised excitations coupled with
topological defects, interfacial mobile excitations and growth of information
pathways.Comment: Accepted to Int J Bifurcation and Chaos (2011
Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition
A neuromorphic chip that combines CMOS analog spiking neurons and memristive
synapses offers a promising solution to brain-inspired computing, as it can
provide massive neural network parallelism and density. Previous hybrid analog
CMOS-memristor approaches required extensive CMOS circuitry for training, and
thus eliminated most of the density advantages gained by the adoption of
memristor synapses. Further, they used different waveforms for pre and
post-synaptic spikes that added undesirable circuit overhead. Here we describe
a hardware architecture that can feature a large number of memristor synapses
to learn real-world patterns. We present a versatile CMOS neuron that combines
integrate-and-fire behavior, drives passive memristors and implements
competitive learning in a compact circuit module, and enables in-situ
plasticity in the memristor synapses. We demonstrate handwritten-digits
recognition using the proposed architecture using transistor-level circuit
simulations. As the described neuromorphic architecture is homogeneous, it
realizes a fundamental building block for large-scale energy-efficient
brain-inspired silicon chips that could lead to next-generation cognitive
computing.Comment: This is a preprint of an article accepted for publication in IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol 5, no.
2, June 201
Recommended from our members
Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization.
The key operation in stochastic neural networks, which have become the state-of-the-art approach for solving problems in machine learning, information theory, and statistics, is a stochastic dot-product. While there have been many demonstrations of dot-product circuits and, separately, of stochastic neurons, the efficient hardware implementation combining both functionalities is still missing. Here we report compact, fast, energy-efficient, and scalable stochastic dot-product circuits based on either passively integrated metal-oxide memristors or embedded floating-gate memories. The circuit's high performance is due to mixed-signal implementation, while the efficient stochastic operation is achieved by utilizing circuit's noise, intrinsic and/or extrinsic to the memory cell array. The dynamic scaling of weights, enabled by analog memory devices, allows for efficient realization of different annealing approaches to improve functionality. The proposed approach is experimentally verified for two representative applications, namely by implementing neural network for solving a four-node graph-partitioning problem, and a Boltzmann machine with 10-input and 8-hidden neurons
Fully CMOS Memristor Based Chaotic Circuit
This paper demonstrates the design of a fully CMOS chaotic circuit consisting of only DDCC based memristor and inductance simulator. Our design is composed of these active blocks using CMOS 0.18 µm process technology with symmetric ±1.25 V supply voltages. A new single DDCC+ based topology is used as the inductance simulator. Simulation results verify that the design proposed satisfies both memristor properties and the chaotic behavior of the circuit. Simulations performed illustrate the success of the proposed design for the realization of CMOS based chaotic applications
- …
