8,021 research outputs found

    Self-Learning Classifier for Internet traffic

    Get PDF
    Network visibility is a critical part of traffic engineering, network management, and security. Recently, unsupervised algorithms have been envisioned as a viable alternative to automatically identify classes of traffic. However, the accuracy achieved so far does not allow to use them for traffic classification in practical scenario. In this paper, we propose SeLeCT, a Self-Learning Classifier for Internet traffic. It uses unsupervised algorithms along with an adaptive learning approach to automatically let classes of traffic emerge, being identified and (easily) labeled. SeLeCT automatically groups flows into pure (or homogeneous) clusters using alternating simple clustering and filtering phases to remove outliers. SeLeCT uses an adaptive learning approach to boost its ability to spot new protocols and applications. Finally, SeLeCT also simplifies label assignment (which is still based on some manual intervention) so that proper class labels can be easily discovered. We evaluate the performance of SeLeCT using traffic traces collected in different years from various ISPs located in 3 different continents. Our experiments show that SeLeCT achieves overall accuracy close to 98%. Unlike state-of-art classifiers, the biggest advantage of SeLeCT is its ability to help discovering new protocols and applications in an almost automated fashio

    Unsupervised Feature Selection with Adaptive Structure Learning

    Full text link
    The problem of feature selection has raised considerable interests in the past decade. Traditional unsupervised methods select the features which can faithfully preserve the intrinsic structures of data, where the intrinsic structures are estimated using all the input features of data. However, the estimated intrinsic structures are unreliable/inaccurate when the redundant and noisy features are not removed. Therefore, we face a dilemma here: one need the true structures of data to identify the informative features, and one need the informative features to accurately estimate the true structures of data. To address this, we propose a unified learning framework which performs structure learning and feature selection simultaneously. The structures are adaptively learned from the results of feature selection, and the informative features are reselected to preserve the refined structures of data. By leveraging the interactions between these two essential tasks, we are able to capture accurate structures and select more informative features. Experimental results on many benchmark data sets demonstrate that the proposed method outperforms many state of the art unsupervised feature selection methods

    On the informativeness of dominant and co-dominant genetic markers for Bayesian supervised clustering

    Full text link
    We study the accuracy of Bayesian supervised method used to cluster individuals into genetically homogeneous groups on the basis of dominant or codominant molecular markers. We provide a formula relating an error criterion the number of loci used and the number of clusters. This formula is exact and holds for arbitrary number of clusters and markers. Our work suggests that dominant markers studies can achieve an accuracy similar to that of codominant markers studies if the number of markers used in the former is about 1.7 times larger than in the latter

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Optical tomography: Image improvement using mixed projection of parallel and fan beam modes

    Get PDF
    Mixed parallel and fan beam projection is a technique used to increase the quality images. This research focuses on enhancing the image quality in optical tomography. Image quality can be defined by measuring the Peak Signal to Noise Ratio (PSNR) and Normalized Mean Square Error (NMSE) parameters. The findings of this research prove that by combining parallel and fan beam projection, the image quality can be increased by more than 10%in terms of its PSNR value and more than 100% in terms of its NMSE value compared to a single parallel beam
    corecore