947 research outputs found

    Performance analysis of an improved MUSIC DoA estimator

    Full text link
    This paper adresses the statistical performance of subspace DoA estimation using a sensor array, in the asymptotic regime where the number of samples and sensors both converge to infinity at the same rate. Improved subspace DoA estimators were derived (termed as G-MUSIC) in previous works, and were shown to be consistent and asymptotically Gaussian distributed in the case where the number of sources and their DoA remain fixed. In this case, which models widely spaced DoA scenarios, it is proved in the present paper that the traditional MUSIC method also provides DoA consistent estimates having the same asymptotic variances as the G-MUSIC estimates. The case of DoA that are spaced of the order of a beamwidth, which models closely spaced sources, is also considered. It is shown that G-MUSIC estimates are still able to consistently separate the sources, while it is no longer the case for the MUSIC ones. The asymptotic variances of G-MUSIC estimates are also evaluated.Comment: Revised versio

    Wideband DOA Estimation via Sparse Bayesian Learning over a Khatri-Rao Dictionary

    Get PDF
    This paper deals with the wideband direction-of-arrival (DOA) estimation by exploiting the multiple measurement vectors (MMV) based sparse Bayesian learning (SBL) framework. First, the array covariance matrices at different frequency bins are focused to the reference frequency by the conventional focusing technique and then transformed into the vector form. Then a matrix called the Khatri-Rao dictionary is constructed by using the Khatri-Rao product and the multiple focused array covariance vectors are set as the new observations. DOA estimation is to find the sparsest representations of the new observations over the Khatri-Rao dictionary via SBL. The performance of the proposed method is compared with other well-known focusing based wideband algorithms and the Cramer-Rao lower bound (CRLB). The results show that it achieves higher resolution and accuracy and can reach the CRLB under relative demanding conditions. Moreover, the method imposes no restriction on the pattern of signal power spectral density and due to the increased number of rows of the dictionary, it can resolve more sources than sensors

    Multi-Step Knowledge-Aided Iterative ESPRIT for Direction Finding

    Full text link
    In this work, we propose a subspace-based algorithm for DOA estimation which iteratively reduces the disturbance factors of the estimated data covariance matrix and incorporates prior knowledge which is gradually obtained on line. An analysis of the MSE of the reshaped data covariance matrix is carried out along with comparisons between computational complexities of the proposed and existing algorithms. Simulations focusing on closely-spaced sources, where they are uncorrelated and correlated, illustrate the improvements achieved.Comment: 7 figures. arXiv admin note: text overlap with arXiv:1703.1052

    Deterministic Cramer-Rao bound for strictly non-circular sources and analytical analysis of the achievable gains

    Full text link
    Recently, several high-resolution parameter estimation algorithms have been developed to exploit the structure of strictly second-order (SO) non-circular (NC) signals. They achieve a higher estimation accuracy and can resolve up to twice as many signal sources compared to the traditional methods for arbitrary signals. In this paper, as a benchmark for these NC methods, we derive the closed-form deterministic R-D NC Cramer-Rao bound (NC CRB) for the multi-dimensional parameter estimation of strictly non-circular (rectilinear) signal sources. Assuming a separable centro-symmetric R-D array, we show that in some special cases, the deterministic R-D NC CRB reduces to the existing deterministic R-D CRB for arbitrary signals. This suggests that no gain from strictly non-circular sources (NC gain) can be achieved in these cases. For more general scenarios, finding an analytical expression of the NC gain for an arbitrary number of sources is very challenging. Thus, in this paper, we simplify the derived NC CRB and the existing CRB for the special case of two closely-spaced strictly non-circular sources captured by a uniform linear array (ULA). Subsequently, we use these simplified CRB expressions to analytically compute the maximum achievable asymptotic NC gain for the considered two source case. The resulting expression only depends on the various physical parameters and we find the conditions that provide the largest NC gain for two sources. Our analysis is supported by extensive simulation results.Comment: submitted to IEEE Transactions on Signal Processing, 13 pages, 4 figure

    Sparse Modeling of Grouped Line Spectra

    Get PDF
    This licentiate thesis focuses on clustered parametric models for estimation of line spectra, when the spectral content of a signal source is assumed to exhibit some form of grouping. Different from previous parametric approaches, which generally require explicit knowledge of the model orders, this thesis exploits sparse modeling, where the orders are implicitly chosen. For line spectra, the non-linear parametric model is approximated by a linear system, containing an overcomplete basis of candidate frequencies, called a dictionary, and a large set of linear response variables that selects and weights the components in the dictionary. Frequency estimates are obtained by solving a convex optimization program, where the sum of squared residuals is minimized. To discourage overfitting and to infer certain structure in the solution, different convex penalty functions are introduced into the optimization. The cost trade-off between fit and penalty is set by some user parameters, as to approximate the true number of spectral lines in the signal, which implies that the response variable will be sparse, i.e., have few non-zero elements. Thus, instead of explicit model orders, the orders are implicitly set by this trade-off. For grouped variables, the dictionary is customized, and appropriate convex penalties selected, so that the solution becomes group sparse, i.e., has few groups with non-zero variables. In an array of sensors, the specific time-delays and attenuations will depend on the source and sensor positions. By modeling this, one may estimate the location of a source. In this thesis, a novel joint location and grouped frequency estimator is proposed, which exploits sparse modeling for both spectral and spatial estimates, showing robustness against sources with overlapping frequency content. For audio signals, this thesis uses two different features for clustering. Pitch is a perceptual property of sound that may be described by the harmonic model, i.e., by a group of spectral lines at integer multiples of a fundamental frequency, which we estimate by exploiting a novel adaptive total variation penalty. The other feature, chroma, is a concept in musical theory, collecting pitches at powers of 2 from each other into groups. Using a chroma dictionary, together with appropriate group sparse penalties, we propose an automatic transcription of the chroma content of a signal

    Listening for Sirens: Locating and Classifying Acoustic Alarms in City Scenes

    Get PDF
    This paper is about alerting acoustic event detection and sound source localisation in an urban scenario. Specifically, we are interested in spotting the presence of horns, and sirens of emergency vehicles. In order to obtain a reliable system able to operate robustly despite the presence of traffic noise, which can be copious, unstructured and unpredictable, we propose to treat the spectrograms of incoming stereo signals as images, and apply semantic segmentation, based on a Unet architecture, to extract the target sound from the background noise. In a multi-task learning scheme, together with signal denoising, we perform acoustic event classification to identify the nature of the alerting sound. Lastly, we use the denoised signals to localise the acoustic source on the horizon plane, by regressing the direction of arrival of the sound through a CNN architecture. Our experimental evaluation shows an average classification rate of 94%, and a median absolute error on the localisation of 7.5{\deg} when operating on audio frames of 0.5s, and of 2.5{\deg} when operating on frames of 2.5s. The system offers excellent performance in particularly challenging scenarios, where the noise level is remarkably high.Comment: 6 pages, 9 figure
    • …
    corecore