692 research outputs found

    Jointly Tracking and Separating Speech Sources Using Multiple Features and the generalized labeled multi-Bernoulli Framework

    Full text link
    This paper proposes a novel joint multi-speaker tracking-and-separation method based on the generalized labeled multi-Bernoulli (GLMB) multi-target tracking filter, using sound mixtures recorded by microphones. Standard multi-speaker tracking algorithms usually only track speaker locations, and ambiguity occurs when speakers are spatially close. The proposed multi-feature GLMB tracking filter treats the set of vectors of associated speaker features (location, pitch and sound) as the multi-target multi-feature observation, characterizes transitioning features with corresponding transition models and overall likelihood function, thus jointly tracks and separates each multi-feature speaker, and addresses the spatial ambiguity problem. Numerical evaluation verifies that the proposed method can correctly track locations of multiple speakers and meanwhile separate speech signals

    Towards End-to-End Acoustic Localization using Deep Learning: from Audio Signal to Source Position Coordinates

    Full text link
    This paper presents a novel approach for indoor acoustic source localization using microphone arrays and based on a Convolutional Neural Network (CNN). The proposed solution is, to the best of our knowledge, the first published work in which the CNN is designed to directly estimate the three dimensional position of an acoustic source, using the raw audio signal as the input information avoiding the use of hand crafted audio features. Given the limited amount of available localization data, we propose in this paper a training strategy based on two steps. We first train our network using semi-synthetic data, generated from close talk speech recordings, and where we simulate the time delays and distortion suffered in the signal that propagates from the source to the array of microphones. We then fine tune this network using a small amount of real data. Our experimental results show that this strategy is able to produce networks that significantly improve existing localization methods based on \textit{SRP-PHAT} strategies. In addition, our experiments show that our CNN method exhibits better resistance against varying gender of the speaker and different window sizes compared with the other methods.Comment: 18 pages, 3 figures, 8 table
    • …
    corecore