1,856 research outputs found

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Interpretable and Efficient Beamforming-Based Deep Learning for Single Snapshot DOA Estimation

    Full text link
    We introduce an interpretable deep learning approach for direction of arrival (DOA) estimation with a single snapshot. Classical subspace-based methods like MUSIC and ESPRIT use spatial smoothing on uniform linear arrays for single snapshot DOA estimation but face drawbacks in reduced array aperture and inapplicability to sparse arrays. Single-snapshot methods such as compressive sensing and iterative adaptation approach (IAA) encounter challenges with high computational costs and slow convergence, hampering real-time use. Recent deep learning DOA methods offer promising accuracy and speed. However, the practical deployment of deep networks is hindered by their black-box nature. To address this, we propose a deep-MPDR network translating minimum power distortionless response (MPDR)-type beamformer into deep learning, enhancing generalization and efficiency. Comprehensive experiments conducted using both simulated and real-world datasets substantiate its dominance in terms of inference time and accuracy in comparison to conventional methods. Moreover, it excels in terms of efficiency, generalizability, and interpretability when contrasted with other deep learning DOA estimation networks.Comment: 10 pages, 10 figure

    Generalized DOA and Source Number Estimation Techniques for Acoustics and Radar

    Get PDF
    The purpose of this thesis is to emphasize the lacking areas in the field of direction of arrival estimation and to propose building blocks for continued solution development in the area. A review of current methods are discussed and their pitfalls are emphasized. DOA estimators are compared to each other for usage on a conformal microphone array which receives impulsive, wideband signals. Further, many DOA estimators rely on the number of source signals prior to DOA estimation. Though techniques exist to achieve this, they lack robustness to estimate for certain signal types, particularly in the case where multiple radar targets exist in the same range bin. A deep neural network approach is proposed and evaluated for this particular case. The studies detailed in this thesis are specific to acoustic and radar applications for DOA estimation
    corecore