769 research outputs found

    Certification of Safety-Critical Software Under DO-178C and DO-278A

    Get PDF
    The RTCA has recently released DO-178C and DO-278A as new certification guidance for the production of airborne and ground-based air traffic management software, respectively. Additionally, RTCA special committee SC-205 has also produced, at the same time, five other companion documents. These documents are RTCA DO-248C, DO-330, DO-331, DO- 332, and DO-333. These supplements address frequently asked questions about software certification, provide guidance on tool qualification requirements, and illustrate the modifications recommended to DO-178C when using model-based software design, object oriented programming, and formal methods. The objective of this paper is to first explain the relationship of DO-178C to the former DO-178B in order to give those familiar with DO- 178B an indication of what has been changed and what has not been changed. With this background, the relationship of DO-178C and DO-278 to the new DO-278A document for ground-based software development is shown. Last, an overview of the new guidance contained in the tool qualification document and the three new supplements to DO-178C and DO-278A is presented. For those unfamiliar with DO-178B, this paper serves to provide an entry point to this new certification guidance for airborne and ground-based CNS/ATM software certification

    Guidance for Using Formal Methods in a Certification Context

    Get PDF
    This paper discusses some of the challenges to using formal methods in a certification context and describes the effort by the Formal Methods Subgroup of RTCA SC-205/EUROCAE WG-71 to propose guidance to make the use of formal methods a recognized approach. This guidance, expected to take the form of a Formal Methods Technical Supplement to DO-178C/ED-12C, is described, including the activities that are needed when using formal methods, new or modified objectives with respect to the core DO-178C/ED-12C document, and evidence needed for meeting those objectives

    Making the Implicit Explicit: Towards an Assurance Case for DO-178C

    Get PDF
    For about two decades, compliance with Software Considerations in Airborne Systems and Equipment Certification (DO-178B) has been the primary means for receiving regulatory approval for using software on commercial airplanes. A new edition of the standard, DO-178C, was published in December 2011, and regulatory bodies have started the process towards recognizing this edition. The stated purpose of DO-178C remains unchanged from its predecessor: providing guidance for the production of software for airborne systems and equipment that performs its intended function with a level of confidence in safety that complies with airworthiness requirements. Within the text of the guidance, little or no rationale is given for how a particular objective or collection of objectives contributes to achieving this purpose. Thus the assurance case for the document is implicit. This paper discusses a current effort to make the implicit explicit. In particular, the paper describes the current status of the research seeking to identify the specific arguments contained in, or implied by, the DO-178C guidance that implicitly justify the assumption that the document meets its stated purpose

    An experimental Study using ACSL and Frama-C to formulate and verify Low-Level Requirements from a DO-178C compliant Avionics Project

    Full text link
    Safety critical avionics software is a natural application area for formal verification. This is reflected in the formal method's inclusion into the certification guideline DO-178C and its formal methods supplement DO-333. Airbus and Dassault-Aviation, for example, have conducted studies in using formal verification. A large German national research project, Verisoft XT, also examined the application of formal methods in the avionics domain. However, formal methods are not yet mainstream, and it is questionable if formal verification, especially formal deduction, can be integrated into the software development processes of a resource constrained small or medium enterprise (SME). ESG, a Munich based medium sized company, has conducted a small experimental study on the application of formal verification on a small portion of a real avionics project. The low level specification of a software function was formalized with ACSL, and the corresponding source code was partially verified using Frama-C and the WP plugin, with Alt-Ergo as automated prover. We established a couple of criteria which a method should meet to be fit for purpose for industrial use in SME, and evaluated these criteria with the experience gathered by using ACSL with Frama-C on a real world example. The paper reports on the results of this study but also highlights some issues regarding the method in general which, in our view, will typically arise when using the method in the domain of embedded real-time programming.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Functional Requirements-Based Automated Testing for Avionics

    Full text link
    We propose and demonstrate a method for the reduction of testing effort in safety-critical software development using DO-178 guidance. We achieve this through the application of Bounded Model Checking (BMC) to formal low-level requirements, in order to generate tests automatically that are good enough to replace existing labor-intensive test writing procedures while maintaining independence from implementation artefacts. Given that existing manual processes are often empirical and subjective, we begin by formally defining a metric, which extends recognized best practice from code coverage analysis strategies to generate tests that adequately cover the requirements. We then formulate the automated test generation procedure and apply its prototype in case studies with industrial partners. In review, the method developed here is demonstrated to significantly reduce the human effort for the qualification of software products under DO-178 guidance

    Formal Methods Case Studies for DO-333

    Get PDF
    RTCA DO-333, Formal Methods Supplement to DO-178C and DO-278A provides guidance for software developers wishing to use formal methods in the certification of airborne systems and air traffic management systems. The supplement identifies the modifications and additions to DO-178C and DO-278A objectives, activities, and software life cycle data that should be addressed when formal methods are used as part of the software development process. This report presents three case studies describing the use of different classes of formal methods to satisfy certification objectives for a common avionics example - a dual-channel Flight Guidance System. The three case studies illustrate the use of theorem proving, model checking, and abstract interpretation. The material presented is not intended to represent a complete certification effort. Rather, the purpose is to illustrate how formal methods can be used in a realistic avionics software development project, with a focus on the evidence produced that could be used to satisfy the verification objectives found in Section 6 of DO-178C

    Towards DO-178C compatible tool design

    Get PDF
    In software development, testing often takes more than half the total development time (Pan 1999). Test case design and execution of test procedures consume most of the testing time. Thus, automatically generating test cases and automatically detecting errors in test procedures prior to execution is highly advantageous. This thesis proposes a new approach to further automate test case design and the test procedure development process. Several open-source products exist to automate test case design, but they have limitations including test cases that do not trace back to models; test cases that are not reusable for libraries; and limiting test cases to generation on their own test environment. This limits their support for the important, new avionics standard, DO-178C (RTCA 2012). The first contribution of the thesis is a technique for test code generation that, compared to existing products, is faster, provides improved traceability to models, and supports reusable test procedures that can be generated on any testing environment. To address the current limitations, the new approach utilizes the Simulink Design Verifier and an open-source constraint solver to generate test cases. The technique allows each test case to be traced back to an expression and to the original model. Detecting errors in manually written test procedures before testing starts is also critical to efficient verification. It can save hours or even days if errors are detected in the early test procedure design stage. However, analysis done here of a set of open source code analysis tools shows that they cannot detect type and attribute errors effectively. The second contribution of the thesis is to develop a static code analyzer for Python code that detects bugs that could cause automated test procedures to crash. The analyzer converts a Python code to an abstract syntax tree and detects all type and attribute errors by performing a type-flow analysis. This approach provides improved accuracy over existing products. Together, these two contributions, a test code generator with improved traceability and reusability, and a static code analyzer capable of handling more error types, can improve test process compatibility with DO-178C

    An assurance level sensitive UML profile for supporting DO-178C

    Get PDF
    Several model-based approaches have been proposed to ease the process of developing certifiable safety-critical software. In this thesis, we are interested in airborne software which must comply with DO-178C standard. However, existing approaches do not provide complete support for all the activities of the software life cycle as defined by DO-178C. In this thesis, we propose an UML profile that captures the concepts of DO-178C and its supplements in order to model the evidence required for certification. This profile provides modeling constructs for the definition of a DO-178C compliant software life cycle, the specification of the software requirements, the specification of verification data and finally the specification of the traceability that is requested by DO-178C. Furthermore, this profile has the unique feature of providing means to specify the objectives and activities to be performed throughout the software life cycle depending on the targeted assurance level and applied DO-178C supplements. We implemented the proposed profile within Papyrus, an UML modeling environment. We used the profile to model a realistic example of airborne software. Specifically, we illustrated the usefulness of the profile through four use cases
    • …
    corecore