5 research outputs found

    The Impact of Time on DNS Security

    Get PDF
    Time is an important component of the Domain Name System (DNS) and the DNS Security Extensions (DNSSEC). DNS caches rely on an absolute notion of time (eg August 8, 2018 at 11:59pm\u27\u27) to determine how long DNS records can be cached (i.e their Time To Live (TTL)) and to determine the validity interval of DNSSEC signatures. This is especially interesting for two reasons. First, absolute time is set from external sources, and is thus vulnerable to a variety of network attacks that maliciously alter time. Meanwhile, relative time (e.g. 2 hours from the time the DNS query was sent\u27\u27) can be set using sources internal to the operating system, and is thus not vulnerable to network attacks. Second, the DNS on-the-wire protocol only uses relative time; relative time is then translated into absolute time as a part of DNS caching, which introduces vulnerabilities. We leverage these two observations to show how to pivot from network attacks on absolute time to attacks on DNS caching. Specifically, we present and discuss the implications of attacks that (1) expire the cache earlier than intended and (2) make the cached responses stick in the cache longer than intended. We use network measurements to identify a significant attack surface for these DNS cache attacks, focusing specifically on pivots from Network Time Protocol (NTP) attacks by both on-path and off-path attackers. We therefore recommend that DNS resolvers stop using absolute time for caching, and instead start using relative time. We have implemented our recommendations as part of the popular Unbound open source resolver, and our implementation will be part of Unbound\u27s upcoming release

    Internet-Wide Evaluations of Security and Vulnerabilities

    Get PDF
    The Internet significantly impacts the world culture. Since the beginning, it is a multilayered system, which is even gaining more protocols year by year. At its core, remains the Internet protocol suite, where the fundamental protocols such as IPv4, TCP/UDP, DNS are initially introduced. Recently, more and more cross-layer attacks involving features in multiple layers are reported. To better understand these attacks, e.g. how practical they are and how many users are vulnerable, Internet-wide evaluations are essential. In this cumulative thesis, we summarise our findings from various Internet-wide evaluations in recent years, with a main focus on DNS. Our evaluations showed that IP fragmentation poses a practical threat to DNS security, regardless of the transport protocol (TCP or UDP). Defense mechanisms such as DNS Response Rate Limiting could facilitate attacks on DNS, even if they are designed to protect DNS. We also extended the evaluations to a fundamental system which heavily relies on DNS, the web PKI. We found that Certificate Authorities suffered a lot from previous DNS vulnerabilities. We demonstrated that off-path attackers could hijack accounts at major CAs and manipulate resources there, with various DNS cache poisoning attacks. The Domain Validation procedure faces similar vulnerabilities. Even the latest Multiple-Validation-Agent DV could be downgraded and poisoned. On the other side, we also performed Internet-wide evaluations of two important defence mechanisms. One is the cryptographic protocol for DNS security, called DNSSEC. We found that only less than 2% of popular domains were signed, among which about 20% were misconfigured. This is another example showing how poorly deployed defence mechanisms worsen the security. The other is ingress filtering, which stops spoofed traffic from entering a network. We presented the most completed Internet-wide evaluations of ingress filtering, which covered over 90% of all Autonomous Systems. We found that over 80% of them were vulnerable to inbound spoofing

    DNSSEC misconfigurations in popular domains

    No full text
    DNSSEC was designed to protect the Domain Name System (DNS) against DNS cache poisoning and domain hijacking. When widely adopted, DNSSEC is expected to facilitate a multitude of future applications and systems, as well as security mechanisms, that would use the DNS for distribution of security tokens, such as, certificates, IP prefix authentication for routing security, anti-spam mechanisms. Multiple efforts are invested in adopting DNSSEC and in evaluating challenges towards its deployment. In this work we perform a study of errors and misconfigurations in signed domains. To that end, we develop a DNSSEC framework and a webpage for reporting the most up to date statistics and provide reports with vulnerabilities and misconfigurations. Our tool also supports retrieval of historical data and enables to perform long-term studies and observations of changes in the security landscape of DNS. We make our tool and the collected data available via an online webservice

    DNSSEC Misconfigurations in Popular Domains

    No full text
    corecore