32,480 research outputs found
Metastable anions of dinitrobenzene: resonances for electron attachment and kinetic energy release
Attachment of free, low-energy electrons to dinitrobenzene (DNB) in the gas phase leads to DNB as well as several fragment anions. DNB, (DNB-H), (DNB-NO), (DNB-2NO), and (DNB-NO(2)) are found to undergo metastable (unimolecular) dissociation. A rich pattern of resonances in the yield of these metastable reactions versus electron energy is observed; some resonances are highly isomer-specific. Most metastable reactions are accompanied by large average kinetic energy releases (KER) that range from 0.5 to 1.32 eV, typical of complex rearrangement reactions, but (1,3-DNB-H)(-) features a resonance with a KER of only 0.06 eV for loss of NO. (1,3-DNB-NO)(-) offers a rare example of a sequential metastable reaction, namely, loss of NO followed by loss of CO to yield C(5)H(4)O(-) with a large KER of 1.32 eV. The G4(MP2) method is applied to compute adiabatic electron affinities and reaction energies for several of the observed metastable channels. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514931
Electrochemistry and Spectroelectrochemistry of 1,4-Dinitrobenzene in Acetonitrile and Room-Temperature Ionic Liquids: Ion-Pairing Effects in Mixed Solvents
Room-temperature ionic liquids (RTILs) have been shown to have a significant effect on the redox potentials of compounds such as 1,4-dinitrobenzene (DNB), which can be reduced in two one-electron steps. The most noticeable effect is that the two one-electron waves in acetonitrile collapsed to a single two-electron wave in a RTIL such as butylmethyl imidazolium-BF4 (BMImBF4). In order to probe this effect over a wider range of mixed-molecular-solvent/RTIL solutions, the reduction process was studied using UV–vis spectroelectrochemistry. With the use of spectroelectrochemistry, it was possible to calculate readily the difference in E°’s between the first and second electron transfer (ΔE12° = E1° – E2°) even when the two one-electron waves collapsed into a single two-electron wave. The spectra of the radical anion and dianion in BMImPF6 were obtained using evolving factor analysis (EFA). Using these spectra, the concentrations of DNB, DNB–•, and DNB2– were calculated, and from these concentrations, the ΔE12° values were calculated. Significant differences were observed when the bis(trifluoromethylsulfonyl)imide (NTf2) anion replaced the PF6– anion, leading to an irreversible reduction of DNB in BMImNTf2. The results were consistent with the protonation of DNB2–, most likely by an ion pair between DNB2– and BMIm+, which has been proposed by Minami and Fry. The differences in reactivity between the PF6– and NTf2– ionic liquids were interpreted in terms of the tight versus loose ion pairing in RTILs. The results indicated that nanostructural domains of RTILs were present in a mixed-solvent system
Cooling of the Cassiopeia A neutron star and the effect of diffusive nuclear burning
The study of how neutron stars cool over time can provide invaluable insights
into fundamental physics such as the nuclear equation of state and
superconductivity and superfluidity. A critical relation in neutron star
cooling is the one between observed surface temperature and interior
temperature. This relation is determined by the composition of the neutron star
envelope and can be influenced by the process of diffusive nuclear burning
(DNB). We calculate models of envelopes that include DNB and find that DNB can
lead to a rapidly changing envelope composition which can be relevant for
understanding the long-term cooling behavior of neutron stars. We also report
on analysis of the latest temperature measurements of the young neutron star in
the Cassiopeia A supernova remnant. The 13 Chandra observations over 18 years
show that the neutron star's temperature is decreasing at a rate of 2-3 percent
per decade, and this rapid cooling can be explained by the presence of a proton
superconductor and neutron superfluid in the core of the star.Comment: 7 pages, 7 figures; to appear in the AIP Conference Proceedings of
the Xiamen-CUSTIPEN Workshop on the EOS of Dense Neutron-Rich Matter in the
Era of Gravitational Wave Astronomy (January 3-7, 2019, Xiamen, China
Banking risk and regulation: Does one size fit all?
Using data for more than 200 banks from 21 OECD countries for the period 2002 to 2008, we examine the impact of bank regulation and supervision on banking risk. Supervisory control, and regulations on capital and market entry have a significant impact on 'capital and asset risk', while supervisory control and regulations on activities restrictions, private monitoring, market entry, and liquidity, have a significant effect on 'liquidity and market risk'. However, quantile regressions suggest that the effect of regulation and supervision differs across banks: most indicators of bank regulation and supervision do not have a significant effect on low-risk banks, while they do affect high-risk banks.
Ultra-portable explosives sensor based on a CMOS fluorescence lifetime analysis micro-system
The paper published in AIP Advances (a new journal from the American Institute of Physics) had 1100 article downloads in the first 5 months after publication, and was on the journal’s “most read” list for 4 months. The work was featured by AIP in a Physics News Highlight and press release which resulted in >50 international internet articles and an article in Laser Focus World.This work explores the use of a green-light-emitting copolymer as a chemosensor to detect nitroaromatic-based explosive vapors by recording photoluminescence (PL) and time-resolved PL decay. We show successful detection of 10 ppb 1,4-dinitrobenzene (DNB) vapor. Both a conventional time-correlated single photon counting (TCSPC) device and CMOS time-resolved fluorescence lifetime microsystem are used in the DNB detection. An ultra-portable on-site explosive sensor based on the micro-system has also been demonstrated. This gives rise to the potential for real-time, reliable, inexpensive organic/inorganic hybrid explosives detection.Peer reviewe
Interface Transparency of Nb/Pd Layered Systems
We have investigated, in the framework of proximity effect theory, the
interface transparency T of superconducting/normal metal layered systems which
consist of Nb and high paramagnetic Pd deposited by dc magnetron sputtering.
The obtained T value is relatively high, as expected by theoretical arguments.
This leads to a large value of the ratio although Pd does
not exhibit any magnetic ordering.Comment: To be published on Eur. Phys. J.
Vibrational Signatures in the THz Spectrum of 1,3-DNB: A First-Principles and Experimental Study
Understanding the fundamental processes of light-matter interaction is
important for detection of explosives and other energetic materials, which are
active in the infrared and terahertz (THz) region. We report a comprehensive
study on electronic and vibrational lattice properties of structurally similar
1,3-dinitrobenzene (1,3- DNB) crystals through first-principles electronic
structure calculations and THz spectroscopy measurements on polycrystalline
samples. Starting from reported x-ray crystal structures, we use
density-functional theory (DFT) with periodic boundary conditions to optimize
the structures and perform linear response calculations of the vibrational
properties at zero phonon momentum. The theoretically identified normal modes
agree qualitatively with those obtained experimentally in a frequency range up
to 2.5 THz and quantitatively at much higher frequencies. The latter
frequencies are set by intra-molecular forces. Our results suggest that van der
Waals dispersion forces need to be included to improve the agreement between
theory and experiment in the THz region, which is dominated by intermolecular
modes and sensitive to details in the DFT calculation. An improved comparison
is needed to assess and distinguish between intra- and intermolecular
vibrational modes characteristic of energetic materials.Comment: 5 pages, 5 figure
- …
