3 research outputs found

    El ADN: biomol茅cula alternativa para la construcci贸n de nanoestructuras y materiales compuestos

    Get PDF
    El 谩cido desoxirribonucleico, o ADN, es una biomol茅cula esencial para la transferencia de la informaci贸n gen茅tica en los seres vivos que residen en el planeta. Las propiedades fisicoqu铆micas de este 谩cido nucleico tales como ionizaci贸n de las bases heteroc铆clicas y la formaci贸n de puentes de hidr贸geno entre bases complementarias, han atra铆do la atenci贸n de investigadores para la construcci贸n de estructuras a nivel nanom茅trico. Una breve revisi贸n de los trabajos reportados sobre este tema, as铆 como la presentaci贸n de resultados recientes en la s铆ntesis de nanoestructuras met谩licas, mediante este biopol铆mero, son abordadas en este reporte. Desde la propuesta inicial de utilizar el ADN para producir nanoestructuras por uniones de sus cadenas, hace s贸lo unas d茅cadas, hasta el dise帽o y desarrollo de nanomateriales basados en ADN, son presentados y discutidos, proponiendo al final una perspectiva de la tendencia de las l铆neas de investigaci贸n relacionadas.Deoxyribonucleic acid, or DNA, is an essential biomolecule for the genetic information transfer in living organisms, which reside in Earth. Physicochemical properties of this nucleic acid, such as heterocyclical bases ionization and hydrogen bonds interactions between complementary bases, have attracted the attention of researchers for construction of structures, at the nanometric level. A brief review on the reported works about this topic, as well as presentation of recent results in synthesis of metallic nanostructures by this polimer, are presented. From the initial proposal to employ DNA to produce nanostructures by the chains union, some decades ago, to the nanomaterials design and development based on DNA, are presented and discussed. Finally, the perspective to future trends for these research areas is mentioned

    DNA-Based Computation Times

    No full text

    DNA-based computation times

    No full text
    Speed of computation and power consumption are the two main parameters of conventional computing devices implemented in microelectronic circuits. As performance of such devices approaches physical limits, new computing paradigms are emerging. Two paradigms receiving great attention are quantum and DNA-based molecular computing. This paper focuses on DNA-based computing. This paradigm can be abstracted to growth models where computational elements called tiles are self-assembled one by one, subject to some simple hierarchical rules, to fill a given template encoding a Boolean formula. While DNA-based computational devices are known to be extremely energy efficient, little is known concerning the fundamental question of computation times. In particular, given a function, we study the time required to determine its value for a given input. In the simplest instance, the analysis has interesting connections with interacting particle systems and variational problems.
    corecore