883,751 research outputs found
From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions
©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein
The C Terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit
Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3′ deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity
Monte Carlo simulation of melting transition on DNA nanocompartment
DNA nanocompartment is a typical DNA-based machine whose function is
dependent of molecular collective effect. Fundamental properties of the device
have been addressed via electrochemical analysis, fluorescent microscopy, and
atomic force microscopy. Interesting and novel phenomena emerged during the
switching of the device. We have found that DNAs in this system exhibit a much
steep melting transition compared to ones in bulk solution or conventional DNA
array. To achieve an understanding to this discrepancy, we introduced DNA-DNA
interaction potential to the conventional Ising-like Zimm-Bragg theory and
Peyrard-Bishop model of DNA melting. To avoid unrealistic numerical calculation
caused by modification of the Peyrard-Bishop nonlinear Hamiltonian with the
DNA-DNA interaction, we established coarse-gained Monte Carlo recursion
relations by elucidation of five components of energy change during melting
transition. The result suggests that DNA-DNA interaction potential accounts for
the observed steep transition.Comment: 12 pages, 5 figure
Reentrant behavior of divalent counterion mediated DNA-DNA electrostatic interaction
The problem of DNA-DNA interaction mediated by divalent counterions is
studied using computer simulation. Although divalent counterions cannot
condense free DNA molecules in solution, we show that if DNA configurational
entropy is restricted, divalent counterions can cause DNA reentrant
condensation similar to that caused by tri- or tetra-valent counterions.
DNA-DNA interaction is strongly repulsive at small or large counterion
concentration and is negligible or slightly attractive for a concentration in
between. Implications of our results to experiments of DNA ejection from
bacteriophages are discussed. The quantitative result serves to understand
electrostatic effects in other experiments involving DNA and divalent
counterions.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Lett.
(2010
Predicting variation of DNA shape preferences in protein-DNA interaction in cancer cells with a new biophysical model
DNA shape readout is an important mechanism of target site recognition by
transcription factors, in addition to the sequence readout. Several models of
transcription factor-DNA binding which consider DNA shape have been developed
in recent years. We present a new biophysical model of protein-DNA interaction
by considering the DNA shape features, which is based on a neighbour
dinucleotide dependency model BayesPI2. The parameters of the new model are
restricted to a subspace spanned by the 2-mer DNA shape features, which
allowing a biophysical interpretation of the new parameters as
position-dependent preferences towards certain values of the features. Using
the new model, we explore the variation of DNA shape preferences in several
transcription factors across cancer cell lines and cellular conditions. We find
evidence of DNA shape variations at FOXA1 binding sites in MCF7 cells after
treatment with steroids. The new model is useful for elucidating finer details
of transcription factor-DNA interaction. It may be used to improve the
prediction of cancer mutation effects in the future
Physical Constraints and Functional Characteristics of Transcription Factor-DNA Interaction
We study theoretical ``design principles'' for transcription factor-DNA
interaction in bacteria, focusing particularly on the statistical interaction
of the transcription factors (TF's) with the genomic background (i.e., the
genome without the target sites). We introduce and motivate the concept of
`programmability', i.e. the ability to set the threshold concentration for TF
binding over a wide range merely by mutating the binding sequence of a target
site. This functional demand, together with physical constraints arising from
the thermodynamics and kinetics of TF-DNA interaction, leads us to a narrow
range of ``optimal'' interaction parameters. We find that this parameter set
agrees well with experimental data for the interaction parameters of a few
exemplary prokaryotic TF's. This indicates that TF-DNA interaction is indeed
programmable. We suggest further experiments to test whether this is a general
feature for a large class of TF's.Comment: 9 pages, 4 figures; revised version as published in PNA
Linker-mediated self-assembly of mobile DNA-coated colloids
Developing construction methods of materials tailored for given applications
with absolute control over building block placement poses an immense challenge.
DNA-coated colloids offer the possibility of realising programmable
self-assembly, which, in principle, can assemble almost any structure in
equilibrium, but remains challenging experimentally. Here, we propose an
innovative system of linker-mediated mobile DNA-coated colloids (mDNACCs), in
which mDNACCs are bridged by the free DNA linkers in solution, whose two
single-stranded DNA tails can bind with specific single-stranded DNA receptors
of complementary sequence coated on colloids. We formulate a mean-field theory
efficiently calculating the effective interaction between mDNACCs, where the
entropy of DNA linkers plays a nontrivial role. Particularly, when the binding
between free DNA linkers in solution and the corresponding receptors on mDNACCs
is strong, the linker-mediated colloidal interaction is determined by the
linker entropy depending on the linker concentration
On the ion-mediated interaction between protein and DNA
The mechanism allowing a protein to search of a target sequence on DNA is
currently described as an intermittent process composed of 3D diffusion in bulk
and 1D diffusion along the DNA molecule. Due to the relevant charge of protein
and DNA, electrostatic interaction should play a crucial role during this
search. In this paper, we explicitly derive the mean field theory allowing for
a description of the protein-DNA electrostatics in solution. This approach
leads to a unified model of the search process, where 1D and 3D diffusion
appear as a natural consequence of the diffusion on an extended interaction
energy profile.Comment: Proceedings of the 29th ICMP Conference, Tianjin, China (2013
- …
