603,130 research outputs found

    STR profiling and Copy Number Variation analysis on single, preserved cells using current Whole Genome Amplification methods

    Get PDF
    The growing interest in liquid biopsies for cancer research and cell-based non-invasive prenatal testing (NIPT) invigorates the need for improved single cell analysis. In these applications, target cells are extremely rare and fragile in peripheral circulation, which makes the genetic analysis very challenging. To overcome these challenges, cell stabilization and unbiased whole genome amplification are required. This study investigates the performance of four WGA methods on single or a limited number of cells after 24 hour of Streck Cell-Free DNA BCT preservation. The suitability of the DNA, amplified with Ampli1, DOPlify, PicoPLEX and REPLI-g, was assessed for both short tandem repeat (STR) profiling and copy number variant (CNV) analysis after shallow whole genome massively parallel sequencing (MPS). Results demonstrate that Ampli1, DOPlify and PicoPLEX perform well for both applications, with some differences between the methods. Samples amplified with REPLI-g did not result in suitable STR or CNV profiles, indicating that this WGA method is not able to generate high quality DNA after Streck Cell-Free DNA BCT stabilization of the cells

    Implementation of the Combined--Nonlinear Condensation Transformation

    Full text link
    We discuss several applications of the recently proposed combined nonlinear-condensation transformation (CNCT) for the evaluation of slowly convergent, nonalternating series. These include certain statistical distributions which are of importance in linguistics, statistical-mechanics theory, and biophysics (statistical analysis of DNA sequences). We also discuss applications of the transformation in experimental mathematics, and we briefly expand on further applications in theoretical physics. Finally, we discuss a related Mathematica program for the computation of Lerch's transcendent.Comment: 23 pages, 1 table, 1 figure (Comput. Phys. Commun., in press

    Applications and Challenges of Real-time Mobile DNA Analysis

    Full text link
    The DNA sequencing is the process of identifying the exact order of nucleotides within a given DNA molecule. The new portable and relatively inexpensive DNA sequencers, such as Oxford Nanopore MinION, have the potential to move DNA sequencing outside of laboratory, leading to faster and more accessible DNA-based diagnostics. However, portable DNA sequencing and analysis are challenging for mobile systems, owing to high data throughputs and computationally intensive processing performed in environments with unreliable connectivity and power. In this paper, we provide an analysis of the challenges that mobile systems and mobile computing must address to maximize the potential of portable DNA sequencing, and in situ DNA analysis. We explain the DNA sequencing process and highlight the main differences between traditional and portable DNA sequencing in the context of the actual and envisioned applications. We look at the identified challenges from the perspective of both algorithms and systems design, showing the need for careful co-design

    Determining DfT Hardware by VHDL-AMS Fault Simulation for Biological Micro-Electronic Fluidic Arrays

    Get PDF
    The interest of microelectronic fluidic arrays for biomedical applications, like DNA determination, is rapidly increasing. In order to evaluate these systems in terms of required Design-for-Test structures, fault simulations in both fluidic and electronic domains are necessary. VHDL-AMS can be used successfully in this case. This paper shows a highly testable architecture of a DNA Bio-Sensing array, its basic sensing concept, fluidic modeling and sensitivity analysis. The overall VHDL-AMS fault simulation of the system is shown

    MISSEL: a method to identify a large number of small species-specific genomic subsequences and its application to viruses classification

    Get PDF
    Continuous improvements in next generation sequencing technologies led to ever-increasing collections of genomic sequences, which have not been easily characterized by biologists, and whose analysis requires huge computational effort. The classification of species emerged as one of the main applications of DNA analysis and has been addressed with several approaches, e.g., multiple alignments-, phylogenetic trees-, statistical- and character-based methods

    Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors.

    Get PDF
    Aptamers consist of short oligonucleotides that bind specific targets. They provide advantages over antibodies, including robustness, low cost, and reusability. Their chemical structure allows the insertion of reporter molecules and surface-binding agents in specific locations, which have been recently exploited for the development of aptamer-based biosensors and direct detection strategies. Mainstream use of these devices, however, still requires significant improvements in optimization for consistency and reproducibility. DNA aptamers are more stable than their RNA counterparts for biomedical applications but have the disadvantage of lacking the wide array of computational tools for RNA structural prediction. Here, we present the first approach to predict from sequence the three-dimensional structures of single stranded (ss) DNA required for aptamer applications, focusing explicitly on ssDNA hairpins. The approach consists of a pipeline that integrates sequentially building ssDNA secondary structure from sequence, constructing equivalent 3D ssRNA models, transforming the 3D ssRNA models into ssDNA 3D structures, and refining the resulting ssDNA 3D structures. Through this pipeline, our approach faithfully predicts the representative structures available in the Nucleic Acid Database and Protein Data Bank databases. Our results, thus, open up a much-needed avenue for integrating DNA in the computational analysis and design of aptamer-based biosensors

    Tangle analysis of difference topology experiments: applications to a Mu protein-DNA complex

    Full text link
    We develop topological methods for analyzing difference topology experiments involving 3-string tangles. Difference topology is a novel technique used to unveil the structure of stable protein-DNA complexes involving two or more DNA segments. We analyze such experiments for the Mu protein-DNA complex. We characterize the solutions to the corresponding tangle equations by certain knotted graphs. By investigating planarity conditions on these graphs we show that there is a unique biologically relevant solution. That is, we show there is a unique rational tangle solution, which is also the unique solution with small crossing number.Comment: 60 pages, 74 figure

    Efficient DNA isolation from moroccan arar tree [Tetraclinis articulata (Vahl) Masters] leaves and optimization of the rapd-pcr molecular technique

    Get PDF
    Efficient DNA isolation from Moroccan Arar tree [Tetraclinis articulata (Vahl) Masters] leaves and optimization of the RAPD-PCR molecular technique. Molecular genetic analysis of Arar tree [Tetraclinis articulata (Vahl) Masters] is often limited by the availability of fresh tissue and an efficient and reliable protocol for high quality genomic DNA extraction. In this study, two DNA extraction protocols were specifically developed for extracting high quality genomic DNA from Arar tree leaves: modified QIAgen DNA Kit and protocol developed by Ouenzar et al. (1998). DNA yield and purity were monitored by gel electrophoresis and by determining absorbance at UV (A260/A280 and A260/A230). Both ratios were between 1.7 and 2.0, indicating that the presence of contaminating metabolites was minimal. The DNA yield obtained ranged between 20 to 40 μg/g of plant materiel. The Ouenzar and collaborators protocol gave higher yield but was more time consuming compared to QIAgen Kit. However, both techniques gave DNA of good quality that is amenable to RAPD-PCR reactions. Additionally, restriction digestion and PCR analyses of the obtained DNA showed its compatibility with downstream applications. Randomly Amplified Polymorphic DNA profiling from the isolated DNA was optimized to produce scorable and clear amplicons. The presented protocols allow easy and high quality DNA isolation for genetic diversity studies within Arar tree

    Visible diode lasers can be used for flow cytometric immunofluorescence and DNA analysis

    Get PDF
    This report describes a feasibility study concerning the use of a visible diode laser for two important fluorescence applications in a flow cytometer. With a 3 mW 635 nm. diode laser, we performed immunofluorescence measurements using the fluorophore allophycocyanin (APC). We have measured CD8 positive lymphocytes with a two-step labeling procedure and the resulting histograms showed good separation between the negative cells and the dim and the bright fluorescent subpopulations. As a second fluorescence application, we chose DNA analysis with the recently developed DNA/ RNA stains TOTO-3 and TO-PRO-3. In our setup TO-PRO-3 yielded the best results with a CV of 3.4%. Our results indicate that a few milliwatts of 635 nm light from a visible diode laser is sufficient to do single color immunofluorescence measurements with allophycocyanin and DNA analysis with TO-PRO-3. The major advantages of using a diode laser in a flow cytometer are the small size, the low price, the high efficiency, and the long lifetime
    corecore