603,130 research outputs found
STR profiling and Copy Number Variation analysis on single, preserved cells using current Whole Genome Amplification methods
The growing interest in liquid biopsies for cancer research and cell-based non-invasive prenatal testing (NIPT) invigorates the need for improved single cell analysis. In these applications, target cells are extremely rare and fragile in peripheral circulation, which makes the genetic analysis very challenging. To overcome these challenges, cell stabilization and unbiased whole genome amplification are required. This study investigates the performance of four WGA methods on single or a limited number of cells after 24 hour of Streck Cell-Free DNA BCT preservation. The suitability of the DNA, amplified with Ampli1, DOPlify, PicoPLEX and REPLI-g, was assessed for both short tandem repeat (STR) profiling and copy number variant (CNV) analysis after shallow whole genome massively parallel sequencing (MPS). Results demonstrate that Ampli1, DOPlify and PicoPLEX perform well for both applications, with some differences between the methods. Samples amplified with REPLI-g did not result in suitable STR or CNV profiles, indicating that this WGA method is not able to generate high quality DNA after Streck Cell-Free DNA BCT stabilization of the cells
Implementation of the Combined--Nonlinear Condensation Transformation
We discuss several applications of the recently proposed combined
nonlinear-condensation transformation (CNCT) for the evaluation of slowly
convergent, nonalternating series. These include certain statistical
distributions which are of importance in linguistics, statistical-mechanics
theory, and biophysics (statistical analysis of DNA sequences). We also discuss
applications of the transformation in experimental mathematics, and we briefly
expand on further applications in theoretical physics. Finally, we discuss a
related Mathematica program for the computation of Lerch's transcendent.Comment: 23 pages, 1 table, 1 figure (Comput. Phys. Commun., in press
Applications and Challenges of Real-time Mobile DNA Analysis
The DNA sequencing is the process of identifying the exact order of
nucleotides within a given DNA molecule. The new portable and relatively
inexpensive DNA sequencers, such as Oxford Nanopore MinION, have the potential
to move DNA sequencing outside of laboratory, leading to faster and more
accessible DNA-based diagnostics. However, portable DNA sequencing and analysis
are challenging for mobile systems, owing to high data throughputs and
computationally intensive processing performed in environments with unreliable
connectivity and power.
In this paper, we provide an analysis of the challenges that mobile systems
and mobile computing must address to maximize the potential of portable DNA
sequencing, and in situ DNA analysis. We explain the DNA sequencing process and
highlight the main differences between traditional and portable DNA sequencing
in the context of the actual and envisioned applications. We look at the
identified challenges from the perspective of both algorithms and systems
design, showing the need for careful co-design
Determining DfT Hardware by VHDL-AMS Fault Simulation for Biological Micro-Electronic Fluidic Arrays
The interest of microelectronic fluidic arrays for biomedical applications, like DNA determination, is rapidly increasing. In order to evaluate these systems in terms of required Design-for-Test structures, fault simulations in both fluidic and electronic domains are necessary. VHDL-AMS can be used successfully in this case. This paper shows a highly testable architecture of a DNA Bio-Sensing array, its basic sensing concept, fluidic modeling and sensitivity analysis. The overall VHDL-AMS fault simulation of the system is shown
MISSEL: a method to identify a large number of small species-specific genomic subsequences and its application to viruses classification
Continuous improvements in next generation sequencing technologies led to ever-increasing collections of genomic sequences, which have not been easily characterized by biologists, and whose analysis requires huge computational effort. The classification of species emerged as one of the main applications of DNA analysis and has been addressed with several approaches, e.g., multiple alignments-, phylogenetic trees-, statistical- and character-based methods
Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors.
Aptamers consist of short oligonucleotides that bind specific targets. They provide advantages over antibodies, including robustness, low cost, and reusability. Their chemical structure allows the insertion of reporter molecules and surface-binding agents in specific locations, which have been recently exploited for the development of aptamer-based biosensors and direct detection strategies. Mainstream use of these devices, however, still requires significant improvements in optimization for consistency and reproducibility. DNA aptamers are more stable than their RNA counterparts for biomedical applications but have the disadvantage of lacking the wide array of computational tools for RNA structural prediction. Here, we present the first approach to predict from sequence the three-dimensional structures of single stranded (ss) DNA required for aptamer applications, focusing explicitly on ssDNA hairpins. The approach consists of a pipeline that integrates sequentially building ssDNA secondary structure from sequence, constructing equivalent 3D ssRNA models, transforming the 3D ssRNA models into ssDNA 3D structures, and refining the resulting ssDNA 3D structures. Through this pipeline, our approach faithfully predicts the representative structures available in the Nucleic Acid Database and Protein Data Bank databases. Our results, thus, open up a much-needed avenue for integrating DNA in the computational analysis and design of aptamer-based biosensors
Tangle analysis of difference topology experiments: applications to a Mu protein-DNA complex
We develop topological methods for analyzing difference topology experiments
involving 3-string tangles. Difference topology is a novel technique used to
unveil the structure of stable protein-DNA complexes involving two or more DNA
segments. We analyze such experiments for the Mu protein-DNA complex. We
characterize the solutions to the corresponding tangle equations by certain
knotted graphs. By investigating planarity conditions on these graphs we show
that there is a unique biologically relevant solution. That is, we show there
is a unique rational tangle solution, which is also the unique solution with
small crossing number.Comment: 60 pages, 74 figure
Efficient DNA isolation from moroccan arar tree [Tetraclinis articulata (Vahl) Masters] leaves and optimization of the rapd-pcr molecular technique
Efficient DNA isolation from Moroccan Arar tree [Tetraclinis articulata (Vahl) Masters]
leaves and optimization of the RAPD-PCR molecular technique. Molecular genetic analysis of Arar tree
[Tetraclinis articulata (Vahl) Masters] is often limited by the availability of fresh tissue and an efficient and
reliable protocol for high quality genomic DNA extraction. In this study, two DNA extraction protocols were
specifically developed for extracting high quality genomic DNA from Arar tree leaves: modified QIAgen
DNA Kit and protocol developed by Ouenzar et al. (1998). DNA yield and purity were monitored by gel
electrophoresis and by determining absorbance at UV (A260/A280 and A260/A230). Both ratios were between 1.7
and 2.0, indicating that the presence of contaminating metabolites was minimal. The DNA yield obtained
ranged between 20 to 40 μg/g of plant materiel. The Ouenzar and collaborators protocol gave higher yield
but was more time consuming compared to QIAgen Kit. However, both techniques gave DNA of good
quality that is amenable to RAPD-PCR reactions. Additionally, restriction digestion and PCR analyses of the
obtained DNA showed its compatibility with downstream applications. Randomly Amplified Polymorphic
DNA profiling from the isolated DNA was optimized to produce scorable and clear amplicons. The presented
protocols allow easy and high quality DNA isolation for genetic diversity studies within Arar tree
Visible diode lasers can be used for flow cytometric immunofluorescence and DNA analysis
This report describes a feasibility study concerning the use of a visible diode laser for two important fluorescence applications in a flow cytometer. With a 3 mW 635 nm. diode laser, we performed immunofluorescence measurements using the fluorophore allophycocyanin (APC). We have measured CD8 positive lymphocytes with a two-step labeling procedure and the resulting histograms showed good separation between the negative cells and the dim and the bright fluorescent subpopulations. As a second fluorescence application, we chose DNA analysis with the recently developed DNA/ RNA stains TOTO-3 and TO-PRO-3. In our setup TO-PRO-3 yielded the best results with a CV of 3.4%. Our results indicate that a few milliwatts of 635 nm light from a visible diode laser is sufficient to do single color immunofluorescence measurements with allophycocyanin and DNA analysis with TO-PRO-3. The major advantages of using a diode laser in a flow cytometer are the small size, the low price, the high efficiency, and the long lifetime
- …
