93,789 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Heavy Duty Vehicle Fuel Consumption Modelling Using Artificial Neural Networks.

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly, a transient state test was performed, in order to evaluate the polynomial regression and 25 ANN models with different parameters. Based on the results, the best ANN model was chosen. Then, validation test was conducted using real duty cycle loads for model comparison. The neural network model outperformed the conventional method and represents fuel consumption of the engine operating in transient states significantly better. The presented method can be applied in order to reduce fuel consumption in utility vehicles delivering accurate fuel economy model of truck engines, in particular in low engine speed and torque range

    Artificial neural networks as a multivariate calibration tool: modelling the Fe-Cr-Ni system in X-ray fluorescence spectroscopy

    Get PDF
    The performance of artificial neural networks (ANNs) for modeling the Cr---Ni---Fe system in quantitative x-ray fluorescence spectroscopy was compared with the classical Rasberry-Heinrich model and a previously published method applying the linear learning machine in combination with singular value decomposition. Apart from determining if ANNs were capable of modeling the desired non-linear relationships, also the effects of using non-ideal and noisy data were studied. For this goal, more than a hundred steel samples with large variations in composition were measured at their primary and secondary K¿ and Kß lines. The optimal calibration parameters for the Rasberry-Heinrich model were found from this dataset by use of a genetic algorithm. ANNs were found to be robust and to perform generally better than the other two methods in calibrating over large ranges

    Designing a fruit identification algorithm in orchard conditions to develop robots using video processing and majority voting based on hybrid artificial neural network

    Get PDF
    The first step in identifying fruits on trees is to develop garden robots for different purposes such as fruit harvesting and spatial specific spraying. Due to the natural conditions of the fruit orchards and the unevenness of the various objects throughout it, usage of the controlled conditions is very difficult. As a result, these operations should be performed in natural conditions, both in light and in the background. Due to the dependency of other garden robot operations on the fruit identification stage, this step must be performed precisely. Therefore, the purpose of this paper was to design an identification algorithm in orchard conditions using a combination of video processing and majority voting based on different hybrid artificial neural networks. The different steps of designing this algorithm were: (1) Recording video of different plum orchards at different light intensities; (2) converting the videos produced into its frames; (3) extracting different color properties from pixels; (4) selecting effective properties from color extraction properties using hybrid artificial neural network-harmony search (ANN-HS); and (5) classification using majority voting based on three classifiers of artificial neural network-bees algorithm (ANN-BA), artificial neural network-biogeography-based optimization (ANN-BBO), and artificial neural network-firefly algorithm (ANN-FA). Most effective features selected by the hybrid ANN-HS consisted of the third channel in hue saturation lightness (HSL) color space, the second channel in lightness chroma hue (LCH) color space, the first channel in L*a*b* color space, and the first channel in hue saturation intensity (HSI). The results showed that the accuracy of the majority voting method in the best execution and in 500 executions was 98.01% and 97.20%, respectively. Based on different performance evaluation criteria of the classifiers, it was found that the majority voting method had a higher performance.European Union (EU) under Erasmus+ project entitled “Fostering Internationalization in Agricultural Engineering in Iran and Russia” [FARmER] with grant number 585596-EPP-1-2017-1-DE-EPPKA2-CBHE-JPinfo:eu-repo/semantics/publishedVersio

    An on-line training radial basis function neural network for optimum operation of the UPFC

    Get PDF
    The concept of Flexible A.C. Transmission Systems (FACTS) technology was developed to enhance the performance of electric power networks (both in steady-state and transient-state) and to make better utilization of existing power transmission facilities. The continuous improvement in power ratings and switching performance of power electronic devices together with advances in circuit design and control techniques are making this concept and devices employed in FACTS more commercially attractive. The Unified Power Flow Controller (UPFC) is one of the main FACTS devices that have a wide implication on the power transmission systems and distribution. The purpose of this paper is to explore the use of Radial Basis Function Neural Network (RBFNN) to control the operation of the UPFC in order to improve its dynamic performance. The performance of the proposed controller compares favourably with the conventional PI and the off-line trained controller. The simple structure of the proposed controller reduces the computational requirements and emphasizes its appropriateness for on-line operation. Real-time implementation of the controller is achieved through using dSPACE ds1103 control and data acquisition board. Simulation and experimental results are presented to demonstrate the robustness of the proposed controller against changes in the transmission system operating conditions

    A Soft Computing Approach to Dynamic Load Balancing in 3GPP LTE

    Get PDF
    A major objective of the 3GPP LTE standard is the provision of high-speed data services. These services must be guaranteed under varying radio propagation conditions, to stochastically distributed mobile users. A necessity for determining and regulating the traffic load of eNodeBs naturally ensues. Load balancing is a self-optimization operation of self-organizing networks (SON). It aims at ensuring an equitable distribution of users in the network. This translates into better user satisfaction and a more efficient use of network resources. Several methods for load balancing have been proposed. Most of the algorithms are based on hard (traditional) computing which does not utilize the tolerance for precision of load balancing. This paper proposes the use of soft computing, precisely adaptive Neuro-fuzzy inference system (ANFIS) model for dynamic QoS aware load balancing in 3GPP LTE. The use of ANFIS offers learning capability of neural network and knowledge representation of fuzzy logic for a load balancing solution that is cost effective and closer to human intuitio
    corecore