26,294 research outputs found
Fungal solid state fermentation on agro-industrial wastes for acid wastewater decolourization in a continuous flow packed-bed bioreactor
This study was aimed at developing a process of solid state fermentation (SSF) with the fungi Pleurotus ostreatus and Trametes versicolor on apple processing residues for wastewater decolorization. Both fungi were able to colonize apple residues without any addition of nutrients, material support or water. P. ostreatus produced the highest levels of laccases (up to 9 U g-1 of dry matter) and xylanases (up to 80 U g-1 of dry matter). A repeated batch decolorization experiment was set up with apple residues colonized by P. ostreatus, achieving 50% decolorization and 100% detoxification after 24 h, and, adding fresh wastewater every 24 h, a constant decolorization of 50% was measured for at least 1 month. A continuous decolorization experiment was set up by a packed-bed reactor based on colonized apple residues achieving a performance of 100 mg dye L-1 day-1 at a retention time of 50
Decolorization of synthetic melanoidins-containing wastewater by a bacterial consortium
The presence of melanoidins in molasses wastewater leads to water pollution both due to its dark brown color and its COD contents. In this study, a bacterial consortium isolated from waterfall sediment was tested for its decolorization. The identification of culturable bacteria by 16S rDNA based approach showed that the consortium composed of Klebsiella oxytoca, Serratia mercescens, Citrobacter sp. and unknown bacterium. In the context of academic study, prevention on the difficulties of providing effluent as well as its variations in compositions, several synthetic media prepared with respect to color and COD contents based on analysis of molasses wastewater, i.e., Viandox sauce (13.5% v/v), caramel (30% w/v), beet molasses wastewater (41.5% v/v) and sugarcane molasses wastewater (20% v/v) were used for decolorization using consortium with color removal 9.5, 1.13, 8.02 and 17.5%, respectively, within 2 days. However, Viandox sauce was retained for further study. The effect of initial pH and Viandox concentration on decolorization and growth of bacterial consortium were further determined. The highest decolorization of 18.3% was achieved at pH 4 after 2 day of incubation. Experiments on fresh or used medium and used or fresh bacterial cells, led to conclusion that the limitation of decolorization was due to nutritional deficiency. The effect of aeration on decolorization was also carried out in 2 L laboratory-scale suspended cell bioreactor. The maximum decolorization was 19.3% with aeration at KLa = 2.5836 h-1 (0.1 vvm)
Kinetic study of adsorption and photo-decolorization of Reactive Red 198 on TiO2 surface
Recycling and reuse of wastewater after purification will reduce the environmental pollution as well as fulfill the increasing demand of water. Adsorption-based water treatment process is very popular for dye-house wastewater treatment. The present study deals with treatment of wastewater contaminated by reactive dye. TiO2 is used as adsorbent and the spent adsorbent has been regenerated by Advanced Oxidation Process (AOP), without using any other chemicals. TiO2 adsorbs dye molecules and then those dye molecules have been oxidized via a photocatalytic reaction in presence of UV irradiation. Kinetics of dye adsorption and photocatalytic oxidation reaction has been developed in this study. Photocatalyst adsorbent (TiO2) has been reused several times after regeneration. The activity of catalyst decreases after each cycle; due to poisoning cause by intermediate by-products. Kinetic of this catalyst deactivation has been incorporated with L–H model to develop the photocatalytic reaction kinetic model
Performance of Ceriporiopsis SP. in the Treatment of Black Liquor Wastewater
High amounts of black liquor wastewater are generated from bioethanol production by using oil palm empty fruit bunches. It contains an alkaline solution (NaOH), so it is quite toxic for aquatic ecosystems if discharged directly into waters. Black liquor has been treated by coagulation method, and it still needs additional treatment. This study aimed to determine degradation of black liquor wastewater by selected white-rot fungi (WRF). Five different strains of WRF have been tested for their ability to decolorize black liquor on agar and liquid media. Out of five fungi studied, two fungi, Ceriporiopsis sp. and Phanerochaete chrysosporium, showed the capacity to grow more than 50% on agar medium. In liquid medium, the percentage of decolorization of 15,000 ppm coagulated and diluted black liquor ranged from 70 to 89% at 30 days depending on the fungal strain. Ceriporiopsis sp. showed the better ability to decolorize black liquor than P. chrysosporium. The performance of Ceriporiopsis sp was evaluated regarding decolorization of black liquor, chemical oxygen demand (COD), and mycelial dry weight both in coagulated black liquor and original black liquor. The color of original and coagulated black liquor can be decolorized up to 90.13 and 86.85%, respectively. COD in original and coagulated black liquor was reduced up to 70.17 and 40.09%, respectively. The presence of coagulant Poly Aluminum Chloride (PAC) inhibited degradation of black liquor by fungus. The result demonstrated that Ceriporiopsis sp has a potential alternative to treat black liquor wastewater
????????? ?????????????????? ????????? ????????? ?????? ??????????????? ??????????????? ?????? ???????????? ??????
Department of Chemical EngineeringLignin peroxidase is promising ingredient for skin whitening cosmetics because it is capable of oxidizing melanin with high redox potential. Crude lignin peroxidase from fungal fermentation is usually utilized owing to its difficulties of expression and purification. Lignin peroxidase is hard to express and purify so it was usually applied as crude form for cosmetics. In this study, lignin peroxidase isozyme H8 (LiPH8) from Phanerochaete chrysosperium was expressed in E. coli and purified for further use of melanin decolorization. The pH optimum for the decolorization of melanin was pH 4.0. Melanin decolorization efficiency was reached to 73% by intermittent addition of hydrogen peroxide (H2O2), since excessive concentration of H2O2 converts LiPH8 into compound III which is the inactivated form of lignin peroxidase. Considering that the intermittent supply of H2O2 is not practical for cosmetic applications, glucose oxidase from aspergillus niger (GOx) was utilized for in-situ generation of H2O2. GOx and ??-D-glucose concentration was optimized and melanin decolorization efficiency reached 63.3% within 1h. LiPH8 retained its activity for 8h with 84.0% of melanin decolorization efficiency. With these results, melanin decolorization catalyzed by LiPH8 with H2O2 generated from GOx was proven to be a prospective approach for skin whitening applications.clos
Optimization and mechanisms for biodecoloration of a mixture of dyes by Trichosporon akiyoshidainum HP 2023
Trichosporon akiyoshidainum HP2023 is a basidiomycetous yeast isolated from Las Yungas rainforest (Tucumán, Argentina) and selected based on its outstanding textile-dye-decolorizing ability. In this work, the decolorization process was optimized using Reactive Black 5 as dye model. Lactose and urea were chosen as carbon and nitrogen sources through a one-at-time approach. Afterwards, factorial designs were employed for medium optimization, leading to the formulation of a simpler optimized medium which contains in g L−1: lactose 10, yeast extract 1, urea 0.5, KH2PO4 1 and MgSO4 1. Temperature and agitation conditions were also optimized. The optimized medium and incubation conditions for dye removal were extrapolated to other dyes individually and a mixture of them. Dye removal process happened through both biosorption and biodegradation mechanisms, depending primarily on the dye structure. A positive relation between initial inoculum and dye removal rate and a negative relation between initial dye concentration and final dye removal percentages were found. Under optimized conditions, T. akiyoshidainum HP2023 was able to completely remove a mixture of dyes up to a concentration of 300 mg L−1, a concentration much higher than those expected in real effluents.Fil: Martorell, María Martha. Ministerio de Relaciones Exteriores, Comercio Internacional y Culto. Direccion Nacional del Antártico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rosales Soro, Maria del Milagro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Planta Piloto de Procesos Industriales Microbiologicos; ArgentinaFil: Pajot, Hipolito Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Planta Piloto de Procesos Industriales Microbiologicos; ArgentinaFil: Castellanos, Lucia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Planta Piloto de Procesos Industriales Microbiologicos; Argentin
Kinetic-spectrophotometric method for the determination of trace amounts of bromide in seawater
A novel simple, sensitive and rapid kinetic-spectrophotornetric method is proposed for the determination of trace amounts of bromide. The method is based on its catalytic effect on the oxidation of methylene blue (MB) by hydrogen peroxide in strongly acidic solution. The oxidation reaction is activated by large amounts of chloride and can be monitored spectrophotometrically by measuring the decrease in the absorbance of MB at 746 run. The determination of bromide is performed by a fixed-time method at the first 100 s from the initiation of the reaction. Unlike other kinetic-spectrophotornetric methods for the determination of bromide, the proposed method does not require heating the solution. Bromide can be determined in the range from 80 to 960 mu g l(-1) with the detection limit of 35 mu g l(-1). The relative standard deviation of ten replicate determination of 480 mu g l(-1) bromide was 1.4%. The influence of potential interfering ions was studied. The proposed method was satisfactorily applied to the determination of bromide in seawater without interfering effect from chloride ion.</p
Modification of bacterial cell membrane to accelerate decolorization of textile wastewater effluent using microbial fuel cells: role of gamma radiation
The aim of the present work was to increase bacterial adhesion on anode via inducing membrane modifications to enhance textile wastewater treatment in Microbial Fuel Cell (MFC). Real textile wastewater was used in mediator-less MFCs for bacterial enrichment. The enriched bacteria were pre-treated by exposure to 1 KGy gamma radiation and were tested in MFC setup. Bacterial cell membrane permeability and cell membrane charges were measured using noninvasive dielectric spectroscopy measurements. The results show that pre-treatment using gamma radiation resulted in biofilm formation and increased cell permeability and exopolysaccharide production; this was reflected in both MFC performance (average voltage 554.67 mV) and decolorization (96.42%) as compared to 392.77 mV and 60.76% decolorization for non-treated cells. At the end of MFC operation, cytotoxicity test was performed for treated wastewater using a dermal cell line, the results obtained show a decrease in toxicity from 24.8 to 0 (v/v%) when cells were exposed to gamma radiation. Fourier-transform infrared (FTIR) spectroscopy showed an increase in exopolysaccharides in bacterial consortium exposed to increasing doses of gamma radiation suggesting that gamma radiation increased exopolysaccharide production, providing transient media for electron transfer and contributing to accelerating MFC performance. Modification of bacterial membrane prior to MFC operation can be considered highly effective as a pre-treatment tool that accelerates MFC performance
- …
