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ABSTRACT 

Trichosporon akiyoshidainum HP2023 is a basidiomycetous yeast isolated from 

Las Yungas rainforest (Tucumán, Argentina) and selected based on its outstanding 

textile dye decolorizing ability. In this work, the decolorization process was optimized 

using Reactive Black 5 as dye model. Lactose and urea were chosen as carbon and 
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nitrogen sources through a one-at-time approach. Afterwards, factorial designs were 

employed for medium optimization; leading to the formulation of a simpler optimized 

medium which contains in g L-1: lactose 10, yeast extract 1, urea 0.5, KH2PO4 1 and 

MgSO4 1. Temperature and agitation conditions were also optimized. The optimized 

medium and incubation conditions for dye removal were extrapolated to other dyes 

individually and a mixture of them. Dye removal process happened through both 

biosorption and biodegradation mechanisms, depending primarily on dye structure. A 

positive relation between initial inoculum and dye removal rate and a negative relation 

between initial dye concentration and final dye removal percentages were found. Under 

optimized conditions Trichosporon akiyoshidainum HP2023 was able to completely 

remove a mixture of dyes up to a concentration of 300 mg L-1, a concentration much 

higher than those expected in real effluents. 

 

Keywords: Biodecolorization, biosorption, Dyes, Yeasts, Media Optimization. 
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Introduction 

In the past decades, pollution of water bodies contaminated with dyestuffs has 

been increasingly serious. It is estimated that nearly 300,000 t of textile dyes are 

discharged into the nature environment every year, among which, azo dyes 

characterized by one or more azo groups (N=N), account for the majority. Such azo 

dyes-containing effluents are aesthetically unpleasant, but the major problem is that 

most azo dyes and their metabolic intermediates are toxic, carcinogenic, and mutagenic 

to most living organisms [1].  

Various technologies such as physical, chemical, and biological methods have 

been developed to treat this kind of industrial effluents. However, conventional 

treatments are impractical to industrial application since they proved to be expensive 

and prone to produce large amounts of secondary pollution. By contrast, microbial 

removal processes have become the dominant technology with the merits of being eco-

friendly and cost competitive [2]. 

The effectiveness of microbial decolorization depends on the adaptability and 

activity of the selected microorganisms. Consequently, several species have been tested 

for the decolorization and degradation of different dyes in recent years. Most existing 

reports about microbial decolorization and degradation of azo dyes were focused on 

fungi, bacteria, actinobacteria and algae. Despite presenting several advantages for their 

use in bioremediation processes, including a great capacity for accumulating dyes, fast 

unicellular growth, the ability to survive harsh environments and faster decolouration 

rates than most filamentous fungi, yeast has attracted little attention until the last two 

decades [1, 4].  

Known yeast species with dye removal abilities are mainly ascomycetous, 

including some belonging to Candida, Saccharomyces, Kluyveromyces and 
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Debaryomyces genera. Among basidiomycetous, Trichosporon and Rhodotorula are the 

most promising genera [4]. According to Pajot et al. [5] the apparent lack of 

basidiomycetous yeast with biodecoloration properties is striking, considering the 

production of ligninolytic enzymes and the widely spread unicellular mode of growth 

between basidiomycetes.  

It is currently accepted that dye removal by yeast occurs via two main processes, 

biosorption and biodegradation, either individually or together depending on 

environmental conditions. Biosorption involves no energy consumption and may occur 

in both, dead and living cells. The dye-cell binding is primarily by union of the dye to 

the nitrogen groups in peptidoglycans or proteins associated with cell wall. It may also 

be through binding to active groups in cell surface, such as acidic polysaccharides, 

lipids, amino acids, and other cellular components. Dye biosorption is a well 

characterized phenomenon, depending mainly on environmental factors such as pH, 

initial dye concentration and biomass dosage and time [6]. On the other hand, 

biodegradation process changes the molecular structure of a compound, where the 

complete mineralization into simpler substances such as CO2, H2O or CH4, is the most 

desired result. When the compound is not completely mineralized, the process is called 

biotransformation. Yeast biotransformation or biodegradation of azo dyes by enzymatic 

mechanisms occurs either by reduction or oxidation mechanisms. Generally, reductive 

reactions lead to cleavage of the azo bond with the consequent formation of aromatic 

amines, further metabolized by yeast. An oxidative cleavage of the azo bond is 

performed by the action of ligninolytic enzymes such as laccases, manganese 

peroxidases, lignin peroxidases, etc. [7].  

Several physicochemical operational parameters have a direct influence on 

microorganism-mediated decolorization processes; such as agitation, dissolved oxygen, 
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temperature, pH, concentration and structure of the dye or dyes tested, additional carbon 

and nitrogen sources, etc. To increase efficiency, speed, and practicality of process 

implementation, determining the effect of each factor in the dye removal process is 

essential [8]. 

The present work is focused on the optimization of media composition in three 

different factorial designs steps, in comparing with most reported works were only one 

step is done, and operational condition for biodecoloration of several dyes by 

Trichosporon akiyoshidainum HP 2023 a fast dye-decolourizing yeast previously 

isolated from the Las Yungas rainforest (Tucumán, Argentina) in submerged 

fermentation [9]. Effects of different factors on the aerobic dye removal by growing 

cells and mechanism involved in biodecolorization process were also investigated. 

 

Materials and Methods 

Yeast 

Yeast T. akiyoshidainum HP-2023, isolated from ‘Las Yungas’ and selected by 

its decolorization potential [5], is currently maintained in the American Type Culture 

Collection as accession number ATCC MYA-4129 and in the Central Bureau Voor 

Schimmelcultures under accession number CBS 10550. For routine work at the 

laboratory scale, yeast cultures are maintained on NDM agar slants at 4ºC and 

subcultured at 15 days intervals. 

 

Culture Media and Dyestuff 

Normal decolorization medium (NDM; in g L-1: glucose, 20; yeast extract, 2,5; 

(NH4)2SO4, 5; KH2PO4, 5; and MgSO4·7H2O, 0,5 and CaCl2 0.13) [10] was used as the 

basic medium for the optimization design.  
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The azo dyes Reactive Black 5, Reactive Red 121, Reactive Blue 221 and 

Reactive Yellow 84, (Figure 1, near here) were kindly provided by Vilmax S.A. Stock 

solutions were prepared by dissolving powdered dyestuff, without prior purification, in 

distilled water up to a concentration of 2 g L-1 and filter-sterilized (Millipore filter, 

0.22mm; Millipore Corp., Bedford, USA). 

 

Growth and Decolorization in Liquid Cultures 

Decolorization kinetics were evaluated in 500 mL-Erlenmeyer flasks containing 

100 mL of NDM medium or the medium under evaluation, plus the dye assayed at a 

final concentration of 200 mg L-1, unless otherwise stated. 10-ml yeast suspension 

(OD550=0.8), prepared from a 16 h old NDM broth culture were used to inoculate the 

flasks. Incubations, unless otherwise specified, were carried out at 25ºC and 250 rpm for 

24 h. Biotic and abiotic controls were performed in all the experiments. Samples were 

aseptically collected at different time intervals and centrifuged for 10 min at 6500 g. 

Pellets were washed twice with sterile water and dried at 80ºC to constant weight for 

biomass dry weight and biomass color determination. Supernatants were kept for 

estimating dye removal and pH.  

 

Dye Monitoring 

Dye decolorization was determined by using culture supernatants obtained as 

above described. Percent color removal (R) of each dye was calculated at its λopt (which 

are: Reactive Black 5, 495 nm; Reactive Red 121, 540 nm; Reactive Blue 221, 610 nm 

and Reactive Yellow 84, 410 nm) as percent decolorization, as follows: 
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Where A0 and At were the absorbance of dye-amended medium at the start point (0) and 

at a cultivation time (t), respectively. 

 Additionally, culture supernatants were subjected to spectral scanning between 

300 and 700 nm, to analyze dye disappearance in the mixture of all dyes. For each 

wavelength, a percentage decrease was calculated, comparing the initial absorbance 

(culture start) from the final absorbance (sample taken). The overall percent removal of 

the dye mixture was evaluated as the average percentage decrease previously obtained. 

 

Effect of Carbon and Nitrogen Sources on Decolorization  

Reactive Black 5 was used as the model dye. Glucose, lactose, sucrose, and 

glycerol, were assayed at equivalent carbon concentrations, as carbon and energy 

sources. Also, three nitrogen sources were evaluated, (NH4)2SO4, urea and NH4NO3. 

Equivalent nitrogen concentrations were also employed in every case. Following a 

combinatorial scheme, the resulting 12 media were evaluated. Biomass and dye removal 

were measured as above described. Specific decolorization rate (ν, mg dye removed g-1
biomass 

h-1) was also calculated for each medium. 

 

Effect of Trace Elements on Decolorization 

The effect of MgSO4·7H2O and CaCl2 over dye removal was assayed by 

preparing three different media, with and without both salts and one without CaCl2. 

Biomass and dye removal were measured as above described.  

 

Experimental Design and Statistical Analysis 

Two five-factor fractional factorial designs were employed. Glucose, yeast 

extract, urea, KH2PO4 and MgSO4·7H2O, were the variables under study. Two extra 
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replicates were included as center points, and thus a total of 34 and 18 experiments were 

employed in these two designs (Tables 1 and 2, near here). After that, a two-factor full 

factorial design was employed where the presence or absence of urea and KH2PO4 were 

the variables under study (Table 3, near here). The central point replicates in each 

design were chosen to verify any change in the estimation procedure, as a measure of 

precision property. These three factorial designs were done to minimize the amount and 

concentration of the culture media components needed for total dye decolorization. 

Samples were taken at 12 and 24 h of incubation. Biomass, pH and dye removal 

were measured as above described. Specific decolorization rate was also calculated for 

each sample.  

 

Effect of Incubation Conditions on Decolorization 

Once optimized the composition of the culture medium, optimal temperature and 

agitation conditions were also determined on a one-at-a-time approach. To evaluate 

temperature influence, flasks were incubated at 20, 25 and 30ºC. After that, agitation 

effect was assayed at 200, 250 and 300 rpm under optimal temperature. Samples were 

taken at 12 and 24 h of incubation. Biomass, pH and dye removal were measured as 

above described. 

 

Evaluation of Optimized Medium on other Dyes Decolorization 

 To evaluate whether the optimal conditions could be extrapolated to other dyes, 

decolorization in NDM and NDMopt media were carried out for Reactive Black 5, 

Reactive Red 121, Reactive Blue 221, and Reactive Yellow 84, and the mixture of these 

four dyes. In all cases, initial dye concentration was 200 mg L-1, to simulate the 

absorbance spectrum observed in the real effluent described by O'Neill et al. [11]. 
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Samples were taken at 12 and 24 h of incubation. Biomass, pH, dye removal, biomass 

color and specific decolorization rate were measured as above described. 

 

Effect of initial Inoculum on Dye Mixture Removal 

 The effect of initial inoculums size in the decoloration process was also 

measured by using NDMopt with the dye mixture at an initial concentration of 200 mg L-

1. Different volumes of the cell suspension obtained as previously described were used, 

which allowed it to evaluate six initial biomass concentrations ranging from 0.08 to 2.8 

g L-1. Samples at initial time, 6, 9, 12 and 24 h were taken. Biomass, pH, dye removal 

and specific decolorization rate were measured as above described.  

 

Evaluation of initial Dye-Mixture Concentration on Decolorization 

 In order to determine the effect of different initial concentration of the mixture 

of dyes on decolorization, eight different concentrations were assayed 100, 200, 300, 

400, 500, 600, 700 and 800 mg L-1. Samples at initial time, 3, 6, 9, 12 and 24 h were 

taken. Biomass, pH, specific decolorization rate and dye removal were measured as 

above described.  

 

Enzymatic Activities 

Laccase (Lacc) experiments were based on the oxidation of 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid) (ABTS, Sigma-Aldrich) followed by the 

increase in absorbance at 420 nm in a reaction mixture containing 1,8 mM ABTS in 100 

mM citrate buffer (pH 3.5) [12]. Mn-dependent peroxidase (MnP) experiments were 

based on the oxidation of MBTH(3-Methyl-2-benzothiazolinone hydrazone 

hydrochloride hydrate )/DMAB(p-Dimethylaminobenzaldehyde) followed by the 
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increase in absorbance at 610 nm in a reaction mixture containing 0.07 mM MBTH, 1 

mM DMAB, 0.3 mM MnSO4.7H2O, 0.05 mM H2O2 in 100 mM succinate lactate buffer 

(pH 4.5) [13]. Finally, Phenol oxidase (POX) measurements were based on catechol 

oxidation followed by the increase in absorbance at 420 nm in a reaction mixture 

containing 0.9 mM of cathecol and 0.07 mM MBTH in 50 mM phosphate buffer (pH 

7.4) [14]. 

 

Statistical Analysis  

All values and data points presented in this work are the means of at least 

triplicate determinations of independent assays. All the results, including those of the 

experimental designs were analyzed using MINITAB 17 (PA, USA). Analysis of 

variance (ANOVA) was used to detect the significant effects e. Tests were considered 

significantly different at p<0.05.  

 

Results and Discussion 

Effect of Carbon, Nitrogen Sources, and Trace Elements on Decolorization  

The behavior of T. akiyoshidainum HP 2023 in different culture media with 

Reactive Black 5 was studied based on dye removal and biomass production at 12 and 

24 h. 

T. akiyoshidainum HP 2023 presented the highest values of biomass in glucose 

amended media, followed, in descending order, by those media with lactose, sucrose, 

and glycerol as C sources.  

No significant differences were observed between N sources at 12 h (p = 0.951). 

However, urea allowed a significantly higher biomass production at 24 h (p = 0.014) 

regardless of the C source (Figure 2, near here). 
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Reactive Black 5 removal reached 90 % at 12h and 100% at 24 h in glucose or 

lactose amended media. Those media with sucrose and glycerol produced significantly 

less biomass. T. akiyoshidainum produced significantly lower decolorization values 

with sucrose and glycerol as C and energy sources, reaching 50 to 90 % at 24 h (p < 

0.001) (Figure 2). 

By contrast, no significant differences were observed in dye removal with 

different N sources, whether at 12 (p = 0.845) or 24 h (p = 0.974), indicating that 

decolorization, unlike yeast growth, was primarily determined by the source of C. 

Three selection criteria were employed: extensiveness of dye removal, specific 

decolorization rate (Complementary Table 1) and economic concerns. Based on these 

criteria, lactose and urea were chosen as C and N sources, respectively, with the aiming 

for a potential use in bioremediation processes.  

Biodecolorization by yeasts is usually regarded as a co-metabolic process [15]. 

The use of easily assimilable carbon sources during decolorization of dyes was 

previously reported for other yeasts and filamentous fungi [16, 17]. Urea has been also 

studied as an economic nitrogen source for dye decolourization by Ganoderma sp. [18], 

Pycnoporus sanguineus [19] and C. tropicalis [17] cultures.  

The simultaneous elimination of CaCl2 and MgSO4, present in very low 

concentrations in the original NDM produced a drastic decline in biomass and dye 

decolorization (p < 0.05). Since no significant differences between the complete 

medium and media without CaCl2 were observed (Fig. 3, near here), we attribute this 

effect to the lower sulfur concentrations in media where (NH4)2SO4 was substituted by 

urea as nitrogen source. Magnesium deficiency could also be detrimental to growth and 

decolorization by itself, as Mg is a known cofactor for many enzymes associated with 
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dye decolorization [20, 21]. Consequently, lactose, urea, yeast extract, KH2PO4 and 

MgSO4 were selected as media components for further optimization. 

 

Optimization of Culture Media for Dye Removal by Factorial Design 

First Factorial Design 

Factors, levels, dye removal (%), biomass (g L-1) and specific decolorization rate 

(mg g-1h-1) at 12 and 24 h of cultivation and pH at 12 and 24 h of culture for the first 

fractional-factorial design are shown in Table 1.  

After 12 h cultivation, dye removal mean was 91.81%, with 8.53% standard 

deviation and a 95% confidence interval of 88.84-94. The pH varied between 4.27 and 

5.75, with values of biomass comprised between 2.14 and 3.30 g L-1, producing specific 

decolorization rates ranging between 3.68 and 6.95 mg g-1h-1.  

In contrast, at 24 hours, average dye removal was 97,19%, standard deviation 

6.08% and 95% confidence interval of the mean 95.07-99.32%; pH values vary between 

3.89 and 8.50 and biomass ranged between 3.21 and 7.06 g L-1, resulting in specific 

decolorization rates between 0.79 and 2.65.  

No correlation could be detected between pH and dye removal either after 12 or 

24 h cultivation (p=0.522 and p=0.243, respectively). Similarly, no correlation could be 

found between biomass production and dye decolorization after 12h and 24 h (p= 0.423 

and p 0.228 respectively). Those results suggest that pH driven dye sorption to yeast 

biomass is not the main decolorization mechanism  

As at 12 h complete dye removals (100%) were obtained, this time was chosen 

for further optimizations, thus reducing growing time and costs associated with the 

process. Complementary Table 1 shows the results of ANOVA analysis, with an r2 of 

0.6387. The analysis showed that, under the conditions tested, only the concentration of 
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KH2PO4 and the interaction between the concentrations of yeast extract and MgSO4, 

had a significant effect on dye removal, evaluated after 12h (p ≤ 0.05). Other 

components in the culture medium could be set to their lowest concentrations. 

KH2PO4 effect on dye decolorization proved to be negative, with average values 

of 96% and 87% at low and high salt concentrations, respectively. The best option to 

optimize dye removal at 12 h was to lower the initial concentration of yeast extract from 

0.25 % to 0.125% while augmenting the MgSO4 from 0.05% to 0.075 %. 

Thus, the final composition of the medium partially optimized by fractional 

factorial model was as follows (% w/v) lactose 1, urea 0.0565, 0.125 yeast extract, 

KH2PO4 0.25 and MgSO4 0.075. 

 

Second Factorial Design 

Dye removal (%), biomass (g L-1) and specific decolorization rate (mg g-1h-1) at 

12 and 24 h of cultivation and pH at 12 and 24 h of culture for the second fractional-

factorial design are shown in Table 2.  

At 12 h average dye removal was 88% with a 95% confidence interval of the 

mean in 84-92% decolorization, whereas at 24 h the average was 89%, with a 95% 

confidence interval of the mean between 86 and 94%. The pH in all tests increased 

during cultivation, possibly by hydrolysis of urea. Thus, at 12 h the average was 4.41 

whereas at 24 h was 6.16. The greatest increase in biomass occurred the initial 12 h of 

culture. On average, the cultures reached 1.88 g L-1 at 12 h and 2.47 g L-1 at 24 h of 

culture. This fast growth along with almost complete dye removal at 12 h produced 

higher specific decolorization rates values at 12 h than at 24 h (8.34 mg g-1h-1 and 3.11 

mg g -1h-1, respectively), based on this data, all future experiments were analyzed at 12 

h.  
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Complementary Table 3 shows the results of ANOVA analysis for data after 

12h, r2 was 0.9732. As shown, the effects of lactose, yeast extract, KH2PO4, and 

urea/yeast extract interaction were significant. For lactose and yeast extract an increase 

in dye removal was observed at higher concentrations, in contrast, dye removal was 

better at lower KH2PO4 concentrations. With respect to urea/yeast extract interaction, 

dye removal was greater with high levels of both compounds (Complementary Table 3). 

Although the effect of MgSO4 was not significant, total color removal were observed 

only at the highest salt concentrations. Therefore, based on the results obtained by this 

analysis, the following partially optimized (% w/v) medium was proposed: lactose 1, 

urea 0.05, yeast extract 0.1, KH2PO4 0.1 and MgSO4 0.1.  

 

Full Factorial Design 

One last design was realized, to study whether the presence of KH2PO4 and urea 

had a positive effect on growth and dye removal. Results of dye removal (%), biomass 

(g L-1) and specific decolorization rate (mg g-1h-1) at 12 and 24 h of cultivation and pH 

at the initial time, 12 and 24 h of culture for the full-factorial design are shown in Table 

3.  

After 12 h, urea, KH2PO4 and the two-way interaction between them showed a 

significant impact on dye decolorization, pH and biomass production (Complementary 

Table 7). Higher concentrations produced maximal dye removal (90-95%) maximal 

biomass production (3.64-3.44 g L-1) and minimal pH (4.32 to 4.21). 

Since both factors were necessary to obtain higher levels of decolorization, the 

final optimized medium (NDMopt) had the following composition (% w/v): lactose 1, 

urea 0.05, yeast extract 0.1, KH2PO4 0.125 and MgSO4 0.1.  
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Media optimization allowed to exclude the unnecessary CaCl2, and to reduce the 

concentration of most components in original medium, lactose in 50%, urea in 70%, 

KH2PO4 in 80%, only MgSO4 concentration needed an increase of 50%. Media 

optimization for biodecolorization has been widely evaluated for bacteria and 

filamentous fungi mediated processes. However, most works deal with non-textile dyes 

(Congo Red or Indigo), initial dye concentrations are usually lower that the ones herein 

assayed (50-150 mg L-1) and cultivation times usually exceed 5 days in multiple works 

reported [22-26]. 

 

Effects of Incubation Conditions on Dye Removal 

Temperature effect on dye removal and biomass production was evaluated at 

250 rpm after 12 and 24 h (Table 4, near here). 

No significant biomass differences where observed between cultures incubated 

at 20 and 25°C (p=0.159 and 0.813, for 12 or 24 h, respectively). However, at 30°C 

biomass production decreased about 70%. Dye decolourization is nowadays regarded as 

a cometabolic process in non-ligninolytic microorganisms including yeasts [27], 

filamentous fungi [28] and bacteria [29], both in axenic cultures and forming consortia 

[30]. Thus, decolorization at 30°C was severely affected after 24 h incubation, however, 

only cultures incubated at 25°C produced complete removal. Consequently, the effect of 

agitation speed was evaluated at 25°C.  

Even when biomass production was slightly affected by agitation speed at 12 h 

incubation (p=0.055), at 24h cultures incubated at 250 rpm produced significantly much 

biomass (p=0.016). Thus 25°C and 250 rpm where selected as optimal incubation 

conditions for further assays. 
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Culture Media Effect on other Textile Dyes Decolorization 

Biodecolorization of Reactive Yellow 84, Reactive Red 121, Reactive Blue 221 

and the mixture of these dyes plus Reactive Black 5, in NDM and NDMopt where 

assayed in optimal conditions determined above (25°C and 250 rpm). 

The results of dye removal, biomass production, pH, specific decolorization 

rates (ν) and biomass color at 12 and 24 h are shown in Table 5 (near here). In all cases, 

a complete color removal between 12 and 24 h was observed. Specific decolorization 

rates (ν) at 12 and 24 h were higher in NDMopt for each dye and the mixture as lower 

values of biomass were obtained. 

It should be noted that, although the values of color removal in the dye mixture 

were 90% at 24 h for the two media, NDM and NDMopt, to the naked eye no color was 

observed. As shown in Figure 4 (near here), the 10% residual color is mainly due to the 

contribution of medium components. Azo dyes Reactive Yellow 84 and Reactive Red 

121 proved to be more recalcitrant than Reactive Black 5, possibly to the effect of 

monochlorotriazine groups. Reactive Blue 221, in the other hand, is a copper-complex 

formazan dye with monochlorotriazine and sulfatoethylsulfone reactive groups. Despite 

this, the results confirmed that medium and cultivation conditions optimized for 

Reactive Black 5 decolorization could be applied to other dyes with different chemical 

structure and even to a mixture of them.  

After centrifuging the cultures with Reactive Red 121 or dye mixture, presented 

a pale pink tone biomass, possibly due to the dye sorption. No color was observed in the 

biomass of cultures with Reactive Yellow 84, Reactive Black 5 or Reactive Blue 221 

possibly implying the complete biodegradation of these dyes. 
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Based on these results, it was decided to continue the experimental work with 

the mixture of the dye, to achieve a closer approximation to a true textile effluent, which 

does not have a single dye, but a complex and dynamic mixture of several dyes [31]. 

 

Effects of Inoculum Size on Dye-Mixture Removal 

The effect of initial biomass concentration of T. akiyoshidainum HP 2023 were 

evaluated between 0.08 and 2.8 g L-1, with an initial dye mixture concentration of 200 

mg L-1 in NDMopt at 25°C and 250 rpm. 

The growth kinetics and decoloration for all tested concentrations of inoculum 

are observed in Figure 5 (near here). No significant differences were observed in 

biomass after 24 hours (p =0.190). Given these results it was considered that biomass 

production was limited by the initial concentration of nutrients in the culture medium 

and not by the magnitude of the initial inoculum. 

Regarding the effect of initial inoculum in color removal kinetic, a clear positive 

correlation was observed (Figure 5). Thus, with an initial biomass of 0.08 g L-1 a color 

removal of 85% was achieved at 24 hours, while with initial biomass of 1.4 and 2.8 g L-

1 dye removals were 90% at 9 and 6 h, respectively. Such positive correlation could be 

expected in cometabolic processes and was described elsewhere [4, 32]. Therefore, for 

the following assays an initial biomass concentration of 2.8 g L-1 was chosen to analyze 

the effect of the initial concentration of dye. 

 

Effects of Initial Dye Concentration 

Growth and dye removal kinetics for the dye mixture initial concentrations 

tested are shown in Figure 6 (near here). Slightly significant biomass differences could 

be appreciated between cultures with different initial concentrations of the dye mixture 

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
B

ri
tis

h 
C

ol
um

bi
a 

L
ib

ra
ry

] 
at

 1
1:

49
 0

1 
Se

pt
em

be
r 

20
17

 



(p = 0.057). It could be concluded that the dye mixture did not inhibit yeast growth in 

tested concentrations. The tolerance of T. akiyoshidaynum to several dyes was 

demonstrated in other culture media [5], but is rare between yeasts with decolorizing 

capacity such as C. tropicalis TL-F1, Scheffersomyces spartinae TLHS-SF1 and Pichia 

occidentalis G1 [16, 33, 34]. 

Percentual dye removal, on the other hand, decreased with the increase in initial 

dye mixture concentration. Up to 300 mg L-1, a maximum dye decolorization of 92% 

was obtained; at concentrations between 400 and 600 mg L-1 decolorization reached 

83%; with 700 mg L-1, maximum color removal was 60% and finally with initial 

concentrations of 800 mg L-1 the removal of color was 35%.  

Despite such decrease, and considering no significant differences in biomass 

production, concentrations above 400 mg L-1 seems to produce maximum specific 

decolorization rates, 1.94, 2.01, 2.01, 1.86 and 1.79 mg g-1 h-1 for initial concentrations 

of 400, 500, 600, 700 and 800 mg L-1 rates respectively.  

 

Enzymatic Activities 

Laccase and MnP activities were undetectable both, in the original (NDM) and 

in the optimized (NDMopt) media, regardless the addition of textile dyes. Conversely, 

phenoloxidase activity significantly increased in dye-amended media after 12 to 24 h 

incubation, disregarding media composition (Table 6, near here), indicating that 

phenoloxidase activity is induced by textile dyes, and that the faster decolourization in 

NDMopt is unconnected to typical ligninolytic activities. Furthermore, since yeast 

biomass remains unstained in original and in optimized media, cultures pH remains 

perineutral, and aromatic-amines accumulation were not detected in previous assays 
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[15, 35, 36], the participation of chelator mediated Fenton reactions could be 

hypothesized, and clearly deserves further investigation. 

 

Conclusions 

In this work the optimization process for media composition and incubation 

conditions for Reactive Black 5 dye using basidiomycetous yeast Trichosporon 

akiyoshidainum HP 2023 was presented.  

Decolorization process proved to be co-metabolic and dependent on extra and 

easily assimilable C and N sources. Urea, chosen as the N source, not only is an 

inexpensive nitrogen organic source, but also can buffer the media, promoting a 

biodegradation process, rather than a biosorption one. The final optimized media, 

simpler that the original one, presented a higher specific decolorization rate, associated 

with a lower biomass production. The optimization process was extrapolated to other 

dyes, and to a mixture of them. 

Dye removal process could be associated with both adsorption and 

biodegradation mechanisms, depending on the dye structure primarily. A positive 

relation between initial inoculum and dye removal rate and a negative relation between 

initial dye concentration and final dye removal percentages were proved. Nevertheless, 

negative effects where only observed in concentrations much higher than those expected 

in real effluents.  

Also, higher specific decolorization rates and complete removal of dye mixture 

in a range of temperatures and agitation conditions are interesting features for a future 

biotechnological application of Trichosporon akiyoshidainum HP 2023 in colored 

effluent treatment. 
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Table 1. Results from the first fractional factorial design for Reactive Black 5 removal optimization with T. akiyoshidainum HP2023. Units: biomass g L-

1, dye removal %, ν, mg g-1h-1.  
Run  

order 
Lactose  Urea Yeast extract KH2PO4 MgSO4 Dye removal  

12 h 
Dye removal  

24 h 
Biomass 

12 h 
Biomass 

24 h 
pH 
0 h 

pH 
12 h 

pH 
24 h 

ν 
12 h 

ν 
24 h 

1 1 0,0565 0,125 0,25 0,075 97,17 99,48 2,40 4,19 5,87 4,52 6,19 6,06 1,78 

2 3 0,0565 0,125 0,25 0,025 93,67 98,47 2,42 5,19 6,20 4,45 4,40 6,33 1,55 

3 1 0,1695 0,125 0,25 0,025 88,65 88,22 2,79 4,12 6,80 5,50 8,25 5,02 1,69 

4 3 0,1695 0,125 0,25 0,075 97,10 100,00 2,62 6,80 6,38 5,05 5,95 6,31 1,25 

5 1 0,0565 0,375 0,25 0,025 98,56 100,00 2,45 4,67 6,31 5,40 6,72 6,77 1,80 

6 3 0,0565 0,375 0,25 0,075 86,74 99,78 2,85 5,30 6,06 5,34 4,83 4,98 1,54 

7 1 0,1695 0,375 0,25 0,075 93,79 97,87 3,18 4,71 6,61 5,55 8,50 4,69 1,65 

8 3 0,1695 0,375 0,25 0,025 96,63 99,86 2,93 5,87 6,62 5,74 5,34 5,08 1,31 

9 1 0,0565 0,125 0,75 0,025 89,15 99,32 2,14 3,80 5,40 4,46 4,78 6,78 2,13 

10 3 0,0565 0,125 0,75 0,075 88,27 100,00 2,75 4,12 5,25 4,29 3,98 5,20 1,96 

11 1 0,1695 0,125 0,75 0,075 90,42 92,62 2,53 3,69 5,38 5,27 7,01 5,79 2,03 

12 3 0,1695 0,125 0,75 0,025 82,40 83,29 2,78 7,06 5,45 5,26 6,14 4,60 0,92 

13 1 0,0565 0,375 0,75 0,075 74,06 97,30 2,52 4,40 5,52 5,17 5,51 4,78 1,80 

14 3 0,0565 0,375 0,75 0,025 75,66 98,64 2,63 5,13 5,53 5,27 4,66 4,57 1,53 

15 1 0,1695 0,375 0,75 0,025 97,97 100,00 2,41 3,22 5,71 5,72 6,94 6,95 2,65 

16 3 0,1695 0,375 0,75 0,075 87,63 99,48 2,99 5,15 5,66 5,56 4,96 4,74 1,56 

17 1 0,0565 0,125 0,25 0,075 96,28 99,00 2,52 4,18 5,88 4,64 6,00 6,07 1,88 

18 3 0,0565 0,125 0,25 0,025 95,30 100,00 2,54 5,18 6,21 4,71 4,17 6,28 1,62 

19 1 0,1695 0,125 0,25 0,025 98,81 98,79 2,91 4,11 6,81 5,60 8,08 5,58 1,98 

20 3 0,1695 0,125 0,25 0,075 99,38 99,64 2,74 6,79 6,39 5,45 6,87 5,88 1,19 

21 1 0,0565 0,375 0,25 0,025 100,00 100,00 2,57 4,66 6,32 5,45 6,86 6,55 1,81 

22 3 0,0565 0,375 0,25 0,075 99,54 100,00 2,97 5,29 6,07 5,16 4,54 5,45 1,54 

23 1 0,1695 0,375 0,25 0,075 98,68 98,53 3,30 4,70 6,62 5,70 8,86 4,85 1,70 

24 3 0,1695 0,375 0,25 0,025 97,87 100,00 3,05 5,86 6,63 5,75 6,03 5,33 1,42 

25 1 0,0565 0,125 0,75 0,025 73,12 92,31 2,26 3,79 5,41 4,27 4,63 5,10 1,92 
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26 3 0,0565 0,125 0,75 0,075 91,08 100,00 2,87 4,11 5,26 4,33 3,89 5,10 1,95 

27 1 0,1695 0,125 0,75 0,075 88,24 92,40 2,65 3,68 5,39 4,92 7,03 5,21 1,96 

28 3 0,1695 0,125 0,75 0,025 67,30 70,35 2,90 7,05 5,46 5,54 6,28 3,68 0,79 

29 1 0,0565 0,375 0,75 0,075 99,73 100,00 2,64 4,39 5,53 4,98 6,02 6,07 1,83 

30 3 0,0565 0,375 0,75 0,025 96,35 100,00 2,75 5,12 5,54 5,01 4,44 5,95 1,66 

31 1 0,1695 0,375 0,75 0,025 96,88 100,00 2,53 3,21 5,72 5,33 7,32 5,91 2,40 

32 3 0,1695 0,375 0,75 0,075 91,00 100,00 3,11 5,14 5,67 5,54 4,87 4,48 1,49 

33 2 0,113 0,25 0,5 0,05 99,68 100,00 2,91 5,21 5,63 4,94 4,36 5,50 1,54 

34 2 0,113 0,25 0,5 0,05 94,63 99,21 2,94 5,20 5,65 5,19 5,40 6,05 1,79 
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Table 2. Results from the second fractional factorial design for Reactive Black 5 optimization with T. akiyoshidainum HP2023. Units: biomass g L-1, dye 
removal %, ν, mg g-1h-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Run  
order 

Lactose Urea Yeast  
extract 

KH2PO4 MgSO4 Dye removal  
12 h 

Dye removal  
24 h 

Biomass 

12 h 

Biomass 
24 h 

pH 
0 h 

pH 

12 h 

pH 
24 h 

ν 

12 h 

ν 

24 h 
1 0,5 0,025 0,06 0,25 0,1 79,40 79,48 1,76 1,70 5,87 3,89 6,03 7,20 3,73 

2 1 0,025 0,06 0,1 0,06 83,07 93,77 2,18 3,20 6,20 4,03 4,00 6,07 2,34 

3 0,5 0,05 0,06 0,1 0,1 80,10 79,51 1,38 1,50 6,80 5,49 7,15 9,27 4,23 

4 1 0,05 0,06 0,25 0,06 77,88 80,97 2,14 3,00 6,38 5,13 6,65 5,81 2,15 

5 0,5 0,025 0,1 0,25 0,06 94,79 94,82 1,30 1,60 6,31 4,59 6,63 11,64 4,73 

6 1 0,025 0,1 0,1 0,1 99,11 100,00 2,50 3,20 6,06 4,29 4,00 6,33 2,50 

7 0,5 0,05 0,1 0,1 0,06 94,93 93,03 1,90 2,00 6,61 6,68 7,85 7,98 3,71 

8 1 0,05 0,1 0,25 0,1 97,25 100,00 2,40 3,60 6,62 4,52 6,67 6,47 2,22 

9 0,5 0,025 0,06 0,25 0,1 78,35 78,03 1,40 1,80 5,40 4,07 6,04 8,94 3,46 

10 1 0,025 0,06 0,1 0,06 88,90 91,75 2,20 2,60 5,25 3,90 3,98 6,45 2,82 

11 0,5 0,05 0,06 0,1 0,1 79,45 77,26 1,20 2,10 5,38 5,31 7,16 10,57 2,94 

12 1 0,05 0,06 0,25 0,06 77,60 80,75 2,00 2,90 5,45 4,94 6,47 6,20 2,22 

13 0,5 0,025 0,1 0,25 0,06 90,36 89,78 0,80 1,90 5,52 5,29 6,64 18,04 3,77 

14 1 0,025 0,1 0,1 0,1 97,79 100,00 2,30 3,30 5,53 4,26 3,95 6,79 2,42 

15 0,5 0,05 0,1 0,1 0,06 95,28 94,44 1,10 1,60 5,71 6,95 7,71 13,83 4,71 

16 1 0,05 0,1 0,25 0,1 98,34 100,00 2,10 3,00 5,66 4,31 6,69 7,48 2,66 

17 0,75 0,0375 0,08 0,175 0,08 88,61 90,67 2,90 2,60 5,88 6,64 6,55 4,88 2,78 

18 0,75 0,0375 0,08 0,175 0,08 89,62 91,03 2,30 2,90 5,86 4,23 6,69 6,22 2,51 
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Table 3. Results from the full factorial design for Reactive Black 5 removal optimization with T. akiyoshidainum HP2023. Units: biomass g L-1, dye 
removal %, ν, mg g-1h-1.  
Run order KH2PO4 urea Dye removal 

12 h 
Dye removal  

24 h 
Biomass 

12 h 
Biomass 

24 h 
pH 
0 h 

pH 
12 h 

pH 
24 h 

ν 
12 h 

ν 
24 h 

1 0 0 74,40 93,95 2,64 3,06 6,61 5,30 3,95 4,70 1,45 
2 0,125 0 78,94 88,16 2,68 3,54 5,60 4,32 3,73 4,91 1,32 

3 0 0,05 74,90 81,75 3,06 5,22 6,04 7,12 6,38 4,08 0,95 

4 0,125 0,05 95,44 100,17 3,64 6,10 5,61 4,60 5,38 4,37 0,68 

5 0 0 77,12 95,28 2,64 3,24 6,61 4,50 3,90 4,87 1,35 

6 0,125 0 81,37 100,00 2,72 3,68 5,60 4,21 3,75 4,99 1,13 

7 0 0,05 74,64 82,60 3,08 5,42 6,04 7,68 6,76 4,04 0,90 

8 0,125 0,05 90,58 100,00 3,44 7,10 5,61 4,95 4,64 4,39 0,59 
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Table 4. Reactive Black 5 removal and biomass of T. akiyoshidainum HP 2023 at 12 and 24 h of culture in NDMopt at different temperature and 
agitation conditions. 

 Biomass (g L-1) Dye removal (%) 

 12 h 24 h 12 h 24 h 

20°C 4,10±0,48 6,44±0,45 83,40±0,55 93,23±0,75 

25°C  3,56±0,14 6,6±0,7 93,00±3,43 99,89±0,11 

30°C  1,57±0,01 1,93±0,24 53,32±0,55 56,90±0,66 

200 rpm 3,38±0,16 5,18±0,11 80,90±0,98 96,16±3,27 

250 rpm  3,83±0,04 5,88±0,07 86,84±0,76 100,0±0,01 

300 rpm  3,86±0,14 5,48±0,11 76,26±1,00 91,12±0,19 
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Table 5. Biomass (g L-1), dye removal (%), ν (mg g-1 h-1) and pH values and biomass color at 12 and 24 h of culture of T. akiyoshidainum HP 2023 in media 
NDMopt and NDM with each dye and the mixture of them. RB5, Reactive Black 5, RY84 : Reactive Yellow 84, RR121, Reactive Red 121 RB221: Reactive 
Blue 221. 

Dye Medium Dye removal  
12 h 

Dye removal 
24 h 

BM 
12 h 

BM 
24 h 

ν 
12 h 

ν 
24 h 

pH 
12 h 

pH 
24 h 

Biomass color  

RB5 NDM 81.47 97.67 4,06 6,10 3,12 1,24 2,63 2,38 Beige 

NDMopt. 85.37 98.25 2,53 4,90 5,55 1,54 5,89 6,18 Beige 

RY84 NDM 96.03 96.74 3,80 5,36 4,35 1,54 2,83 2,41 Cream 

NDMopt. 95.01 96.32 3,00 5,47 5,51 1,50 5,08 5,98 Cream 

RR121 NDM 99.43 100 4,30 7,36 3,87 1,13 2,81 2,41 Red/pink 

NDMopt. 97.91 98.84 2,93 5,67 5,61 1,45 5,98 6,49 Red/pink 

RB221 NDM 100 100 4,43 8,56 3,57 0,93 2,95 2,45 Cream 

NDMopt. 100 100 3,10 5,70 5,07 1,39 4,80 6,17 Cream 

Mixture NDM 77,94 89,73 4,86 6,73 2,67 1,11 2,75 2,42 Red/pink 

NDMopt. 82,45 89,80 3,20 5,71 4,27 1,31 5,18 5,86 Red/pink 
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Table 6. Laccase, MnP and Phenoloxidase activities measured in original NDM and in optimized (NDMopt) media after 12 and 24 h of 

incubation. 

Medium Dye 
Laccase (UI/L) MnP (UI/L) Phenoloxidase (UI/L) 

12h 24h 12h 24h 12h 24h 

Original None 0 0 0 0 0,11 ± 0,011 0,12 ±0,008 

 
RB5 0 0 0 0 0,50 ± 0,017 0,25 ± 0,011 

 
Mixture 0 0 0 0 0,45 ± 0,017 0,28 ± 0,004 

Optimized None 0 0 0 0 0,00 ± 0,013 0,13 ± 0,008 

 
RB5 0 0 0 0 0,43 ± 0,001 0,16 ± 0,081 

 
Mixture 0 0 0 0 0,36 ± 0,072 0,42 ± 0,030 
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Figure Captions:  

Fig. 1. Chemical structure of dyes (A) Reactive Red 141, (B) Reactive Yellow 84, 

Reactive Black 5 and (D) Reactive Blue 221 

Fig. 2. Reactive Black 5 removal (A) and biomass (B) of T. akiyoshidainum HP 2023 at 

12 (white) and 24 h (black) of culture in different media. M1 glucose/(NH4)2SO4, M2 

glucose/NH4NO3, M3 glucose/urea, M4 glycerol/(NH4)2SO4, M5 glycerol/NH4NO3, M6 

glycerol/urea, M7 lactose/(NH4)2SO4, M8 lactose/NH4NO3, M9 lactose/urea, M10 

sucrose/(NH4)2SO4, M11 sucrose/NH4NO3, M12 sucrose/urea  

Fig. 3. Dye removal (A) and biomass (B) of T. akiyoshidainum HP 2023 with Reactive 

Black 5 at 12 and 24 h of culture in different media. M1: with both CaCl2 and MgSO4, 

M2: without both CaCl2 and MgSO4, M3: without CaCl2 

Fig. 4. Spectra of supernatants of T. akiyoshidainum HP 2023 with dye mixture in NDMopt 

(left) and NDM (right). 
Fig. 5. Biomass (A) and dye-mixture removal (B) of T. akiyoshidainum HP 2023 during 

culture in NDMopt with different initial biomass concentrations.  

Fig. 6. Biomass (A) and dye mixture removal (B) of T. akiyoshidainum HP 2023 during 

culture in NDMopt with different initial dye-mixture concentrations.  
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Table S1. Specific decolorization rates for the media evaluated. M1 glucose/(NH4)2SO4, 
M2 glucose/NH4NO3, M3 glucose/urea, M4 glycerol/(NH4)2SO4, M5 glycerol/NH4NO3, 
M6 glycerol/urea, M7 lactose/(NH4)2SO4, M8 lactose/NH4NO3, M9 lactose/urea, M10 
sucrose/(NH4)2SO4, M11 sucrose/NH4NO3, M12 sucrose/urea  
 
  Specific decolorization rates (mg g-1 h-1) 
Media  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 
Time of 
culture 

12 h  3,21 4,31 4,43 10,9 2,51 9,49 9,77 9,09 8,34 11,5 11,7 13,4 
24 h 1,60 1,56 1,00 13,3 3,36 2,27 2,40 2,79 1,21 3,05 3,15 1,43 

 
 
 
Table S2. Estimated regression coefficient and corresponding t and p values of dye 
removal at 12 h. Coef, coefficient for the regression equation. SE Coef, standard error of 
the Coef. t, test statistic with Student’s test.,p: value associated whit test statistic. 
Term Effect Coef SE coef  t p 

Constant  90,47 1,717 52,7 0,000 

 Lactose  -0,2 -0,1 1,717 -0,06 0,954 

Urea 3,153 1,576 1,717 0,92 0,372 

Yeast extract 1,397 0,698 1,717 0,41 0,690 

KH2PO4 -11,331 -5,666 1,717 -3,3 0,005 

MgSO4 -0,1 -0,05 1,717 -0,03 0,977 

Lactose*urea -4,066 -2,033 1,717 -1,18 0,254 

Lactose*yeast extract 0,719 0,359 1,717 0,21 0,837 

Lactose* KH2PO4 0,514 0,257 1,717 0,15 0,883 

Lactose* MgSO4 4,546 2,273 1,717 1,32 0,204 

Urea*yeast extract 4,621 2,31 1,717 1,35 0,197 

Urea* KH2PO4 2,698 1,349 1,717 0,79 0,443 

Urea* MgSO4 2,566 1,283 1,717 0,75 0,466 

Yeast extract* KH2PO4 0,714 0,357 1,717 0,21 0,838 

Yeast extract* MgSO4 -7,542 -3,771 1,717 -2,2 0,043 

Central Point  1,039 5,15 0,2 0,843 

S = 6,86703 R2 = 63,87%  R2 adjusted = 29,99% 

 

 

 

 

Table S3. Estimated regression coefficient and corresponding t and p values of dye 
removal at 12 h. Coef, coefficient for the regression equation. SE Coef, standard error of 
the Coef. t, test statistic with Student’s test.,p: value associated whit test statistic. 
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Term Effect Coef SE coef  t p 

Constant  88,292 0,4535 194,69 0 

Lactose 3,411 1,705 0,4535 3,76 0,004 

Urea -1,37 -0,685 0,4535 -1,51 0,165 

Yeast extract. 15,388 7,694 0,4535 16,97 0,000 

KH2PO4 -3,081 -1,54 0,4535 -3,4 0,008 

MgSO4 0,872 0,436 0,4535 0,96 0,361 

Urea*yeast extract 2,305 1,152 0,4535 2,54 0,032 

Urea* MgSO4 1,492 0,746 0,4535 1,64 0,134 

Ct Pt  0,828 1,3605 0,61 0,558 

S = 1,81379 R2 = 97,32% R2 adjusted = 94,93% 

 

Table S4. Estimated regression coefficient and corresponding t and p values of dye 
removal at 12 h. Coef, coefficient for the regression equation. SE Coef, standard error of 
the Coef. t, test statistic with Student’s test., p: value associated whit test statistic. 
Term Effect Coef SE coef  t p 

Constant  80,922 0,7603 106,44 0,000 

KH2PO4 11,314 5,657 0,7603 7,44 0,002 

Urea 5,391 2,966 0,7603 3,9 0,018 

KH2PO4*urea 6,923 3,462 0,7603 4,55 0,010 

S = 2,15038 R2 = 95,80% R2 ajustado = 92,66% 
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