23,075 research outputs found
Fingerprinting Internet DNS Amplification DDoS Activities
This work proposes a novel approach to infer and characterize Internet-scale
DNS amplification DDoS attacks by leveraging the darknet space. Complementary
to the pioneer work on inferring Distributed Denial of Service (DDoS)
activities using darknet, this work shows that we can extract DDoS activities
without relying on backscattered analysis. The aim of this work is to extract
cyber security intelligence related to DNS Amplification DDoS activities such
as detection period, attack duration, intensity, packet size, rate and
geo-location in addition to various network-layer and flow-based insights. To
achieve this task, the proposed approach exploits certain DDoS parameters to
detect the attacks. We empirically evaluate the proposed approach using 720 GB
of real darknet data collected from a /13 address space during a recent three
months period. Our analysis reveals that the approach was successful in
inferring significant DNS amplification DDoS activities including the recent
prominent attack that targeted one of the largest anti-spam organizations.
Moreover, the analysis disclosed the mechanism of such DNS amplification DDoS
attacks. Further, the results uncover high-speed and stealthy attempts that
were never previously documented. The case study of the largest DDoS attack in
history lead to a better understanding of the nature and scale of this threat
and can generate inferences that could contribute in detecting, preventing,
assessing, mitigating and even attributing of DNS amplification DDoS
activities.Comment: 5 pages, 2 figure
AntibIoTic: Protecting IoT Devices Against DDoS Attacks
The 2016 is remembered as the year that showed to the world how dangerous
Distributed Denial of Service attacks can be. Gauge of the disruptiveness of
DDoS attacks is the number of bots involved: the bigger the botnet, the more
powerful the attack. This character, along with the increasing availability of
connected and insecure IoT devices, makes DDoS and IoT the perfect pair for the
malware industry. In this paper we present the main idea behind AntibIoTic, a
palliative solution to prevent DDoS attacks perpetrated through IoT devices
A survey of defense mechanisms against distributed denial of service (DDOS) flooding attacks
Distributed Denial of Service (DDoS) flooding attacks are one of the biggest concerns for security professionals. DDoS flooding attacks are typically explicit attempts to disrupt legitimate users' access to services. Attackers usually gain access to a large number of computers by exploiting their vulnerabilities to set up attack armies (i.e., Botnets). Once an attack army has been set up, an attacker can invoke a coordinated, large-scale attack against one or more targets. Developing a comprehensive defense mechanism against identified and anticipated DDoS flooding attacks is a desired goal of the intrusion detection and prevention research community. However, the development of such a mechanism requires a comprehensive understanding of the problem and the techniques that have been used thus far in preventing, detecting, and responding to various DDoS flooding attacks. In this paper, we explore the scope of the DDoS flooding attack problem and attempts to combat it. We categorize the DDoS flooding attacks and classify existing countermeasures based on where and when they prevent, detect, and respond to the DDoS flooding attacks. Moreover, we highlight the need for a comprehensive distributed and collaborative defense approach. Our primary intention for this work is to stimulate the research community into developing creative, effective, efficient, and comprehensive prevention, detection, and response mechanisms that address the DDoS flooding problem before, during and after an actual attack. © 1998-2012 IEEE
Scalable DDoS mitigation system for data centers
Abstract
Distributed Denial of Service attacks (DDoS) have been used by attackers for over two decades because of their effectiveness. This type of the cyber-attack is one of the most destructive attacks in the Internet. In recent years, the intensity of DDoS attacks has been rapidly increasing and the attackers combine more often different techniques of DDoS to bypass the protection. Therefore, the main goal of our research is to propose a DDoS solution that allows to increase the filtering capacity linearly and allows to protect against the combination of attacks. The main idea is to develop the DDoS defense system in the form of a portable software image that can be installed on the reserve hardware capacities. During a DDoS attack, these servers will be used as filters of this DDoS attack. Our solution is suitable for data centers and eliminates some lacks of commercial solutions. The system employs modular DDoS filters in the form of special grids containing specific protocol parameters and conditions
- …
