48 research outputs found

    More Efficient Two-Round Multi-Signature Scheme with Provably Secure Parameters

    Get PDF
    In this paper, we propose the first two-round multi-signature scheme that can guarantee 128-bit security under a standardized EC in concrete security without using the Algebraic Group Model (AGM). To construct our scheme, we introduce a new technique to tailor a certain special homomorphic commitment scheme for the use with the Katz-Wang DDH-based signature scheme. We prove that an EC with at least a 321-bit order is sufficient for our scheme to have the standard 128-bit security. This means that it is easy for our scheme to implement in practice because we can use the NIST-standardized EC P-384 for 128-bit security. The signature size of our proposed scheme under P-384 is 1152 bits, which is the smallest size among the existing schemes without using the AGM. Our experiment on an ordinary machine shows that for signing and verification, each can be completed in about 65 ms under 100 signers. This shows that our scheme has sufficiently reasonable running time in practice

    Chopsticks: Fork-Free Two-Round Multi-Signatures from Non-Interactive Assumptions

    Get PDF
    Multi-signatures have been drawing lots of attention in recent years, due to their applications in cryptocurrencies. Most early constructions require three-round signing, and recent constructions have managed to reduce the round complexity to two. However, their security proofs are mostly based on non-standard, interactive assumptions (e.g. one-more assumptions) and come with a huge security loss, due to multiple uses of rewinding (aka the Forking Lemma). This renders the quantitative guarantees given by the security proof useless. In this work, we improve the state of the art by proposing two efficient two-round multi-signature schemes from the (standard, non-interactive) Decisional Diffie-Hellman (DDH) assumption. Both schemes are proven secure in the random oracle model without rewinding. We do not require any pairing either. Our first scheme supports key aggregation but has a security loss linear in the number of signing queries, and our second scheme is the first tightly secure construction. A key ingredient in our constructions is a new homomorphic dual-mode commitment scheme for group elements, that allows to equivocate for messages of a certain structure. The definition and efficient construction of this commitment scheme is of independent interest

    Born and Raised Distributively: Fully Distributed Non-Interactive Adaptively-Secure Threshold Signatures with Short Shares

    Get PDF
    International audienceThreshold cryptography is a fundamental distributed computational paradigm for enhancing the availability and the security of cryptographic public-key schemes. It does it by dividing private keys into nn shares handed out to distinct servers. In threshold signature schemes, a set of at least t+1≤nt+1 \leq n servers is needed to produce a valid digital signature. Availability is assured by the fact that any subset of t+1t+1 servers can produce a signature when authorized. At the same time, the scheme should remain robust (in the fault tolerance sense) and unforgeable (cryptographically) against up to tt corrupted servers; {\it i.e.}, it adds quorum control to traditional cryptographic services and introduces redundancy. Originally, most practical threshold signatures have a number of demerits: They have been analyzed in a static corruption model (where the set of corrupted servers is fixed at the very beginning of the attack), they require interaction, they assume a trusted dealer in the key generation phase (so that the system is not fully distributed), or they suffer from certain overheads in terms of storage (large share sizes). In this paper, we construct practical {\it fully distributed} (the private key is born distributed), non-interactive schemes -- where the servers can compute their partial signatures without communication with other servers -- with adaptive security ({\it i.e.}, the adversary corrupts servers dynamically based on its full view of the history of the system). Our schemes are very efficient in terms of computation, communication, and scalable storage (with private key shares of size O(1)O(1), where certain solutions incur O(n)O(n) storage costs at each server). Unlike other adaptively secure schemes, our schemes are erasure-free (reliable erasure is a hard to assure and hard to administer property in actual systems). To the best of our knowledge, such a fully distributed highly constrained scheme has been an open problem in the area. In particular, and of special interest, is the fact that Pedersen's traditional distributed key generation (DKG) protocol can be safely employed in the initial key generation phase when the system is born -- although it is well-known not to ensure uniformly distributed public keys. An advantage of this is that this protocol only takes one round optimistically (in the absence of faulty player)

    Chopsticks: Fork-Free Two-Round Multi-Signatures from Non-Interactive Assumptions

    Get PDF
    Multi-signatures have been drawing lots of attention in recent years, due to their applications in cryptocurrencies. Most early constructions require three-round signing, and recent constructions have managed to reduce the round complexity to two. However, their security proofs are mostly based on non-standard, interactive assumptions (e.g. one-more assumptions) and come with a huge security loss, due to multiple uses of rewinding (aka the Forking Lemma). This renders the quantitative guarantees given by the security proof useless. In this work, we improve the state of the art by proposing two efficient two-round multi-signature schemes from the (standard, non-interactive) Decisional Diffie-Hellman (DDH) assumption. Both schemes are proven secure in the random oracle model without rewinding. We do not require any pairing either. Our first scheme supports key aggregation but has a security loss linear in the number of signing queries, and our second scheme is the first tightly secure construction. A key ingredient in our constructions is a new homomorphic dual-mode commitment scheme for group elements, that allows to equivocate for messages of a certain structure. The definition and efficient construction of this commitment scheme is of independent interest

    Toothpicks: More Efficient Fork-Free Two-Round Multi-Signatures

    Get PDF
    Tightly secure cryptographic schemes can be implemented with standardized parameters, while still having a sufficiently high security level backed up by their analysis. In a recent work, Pan and Wagner (Eurocrypt 2023) presented the first tightly secure two-round multi-signature scheme without pairings, called Chopsticks. While this is an interesting first theoretical step, Chopsticks is much less efficient than its non-tight counterparts. In this work, we close this gap by proposing a new tightly secure two-round multi-signature scheme that is as efficient as non-tight schemes. Our scheme is based on the DDH assumption without pairings. Compared to Chopsticks, we reduce the signature size by more than a factor of 3 and the communication complexity by more than a factor of 2. Technically, we achieve this as follows: (1) We develop a new pseudorandom path technique, as opposed to the pseudorandom matching technique in Chopsticks. (2) We construct a more efficient commitment scheme with suitable properties, which is an important primitive in both our scheme and Chopsticks. Surprisingly, we observe that the commitment scheme does not have to be binding, enabling our efficient construction

    SRDP: securing route discovery in DSR

    Full text link

    Two-Round Multi-Signatures from Okamoto Signatures

    Get PDF
    Multi-signatures (MS) are a special type of public key signature (PKS) in which multiple signers participate cooperatively to generate a signature for a single message. Recently, applications that use an MS scheme to strengthen the security of blockchain wallets or to strengthen the security of blockchain consensus protocols are attracting a lot of attention. In this paper, we propose an efficient two-round MS scheme based on Okamoto signatures rather than Schnorr signatures. To this end, we first propose a new PKS scheme by modifying the Okamoto signature scheme, and prove the unforgeability of our PKS scheme under the discrete logarithm assumption in the algebraic group model (AGM) and the non-programmable random oracle model (ROM). Next, we propose a two-round MS scheme based on the new PKS scheme and prove the unforgeability of our MS scheme under the discrete logarithm assumption in the AGM and the non-programmable ROM. Our MS scheme is the first one to prove security among two-round MS based on Okamoto signature

    Accountable Multi-Signatures with Constant Size Public Keys

    Get PDF
    A multisignature scheme is used to aggregate signatures by multiple parties on a common message mm into a single short signature on mm. Multisignatures are used widely in practice, most notably, in proof-of-stake consensus protocols. In existing multisignature schemes, the verifier needs the public keys of all the signers in order to verify a multisignature issued by some subset of signers. We construct new practical multisignature schemes with three properties: (i) the verifier only needs to store a constant size public key in order to verify a multisignature by an arbitrary subset of parties, (ii) signature size is constant beyond the description of the signing set, and (iii) signers generate their secret signing keys locally, that is, without a distributed key generation protocol. Existing schemes satisfy properties (ii) and (iii). The new capability is property (i) which dramatically reduces the verifier\u27s memory requirements from linear in the number of signers to constant. We give two pairing-based constructions: one in the random oracle model and one in the plain model. We also show that by relaxing property (iii), that is, allowing for a simple distributed key generation protocol, we can further improve efficiency while continuing to satisfy properties (i) and (ii). We give a pairing-based scheme and a lattice-based scheme in this relaxed model
    corecore