
Accountable Multi-Signatures
with Constant Size Public Keys

Dan Boneh1, Aditi Partap1, and Brent Waters2

1 Stanford University, {dabo,aditi712}@cs.stanford.edu
2 NTT Research and University of Texas, Austin, bwaters@cs.utexas.edu

Abstract. A multisignature scheme is used to aggregate signatures by multiple parties on a common
message m into a single short signature on m. Multisignatures are used widely in practice, most notably,
in proof-of-stake consensus protocols. In existing multisignature schemes, the verifier needs the public
keys of all the signers in order to verify a multisignature issued by some subset of signers. We construct
new practical multisignature schemes with three properties: (i) the verifier only needs to store a constant
size public key in order to verify a multisignature by an arbitrary subset of parties, (ii) signature size
is constant beyond the description of the signing set, and (iii) signers generate their secret signing
keys locally, that is, without a distributed key generation protocol. Existing schemes satisfy properties
(ii) and (iii). The new capability is property (i) which dramatically reduces the verifier’s memory
requirements from linear in the number of signers to constant. We give two pairing-based constructions:
one in the random oracle model and one in the plain model. We also show that by relaxing property (iii),
that is, allowing for a simple distributed key generation protocol, we can further improve efficiency while
continuing to satisfy properties (i) and (ii). We give a pairing-based scheme and a lattice-based scheme
in this relaxed model.

1 Introduction

An n-party accountable multisignature scheme [MOR01] is a tuple of five algorithms. A key gen-
eration algorithm LocalKeyGen(1λ) → (pki, ski) generates a key pair for each of the n parties. Let
pk = (pk1, . . . , pkn) be the resulting vector of public keys. A Sign(ski,m)→ σi algorithm lets party i
sign a message m. An aggregation algorithm SigAgg({σi}i∈J) → σ aggregates the signatures gen-
erated by parties J ⊆ [n] on a common message m into a short aggregate signature σ = (σ′,J),
where J is a description of the signing set, and σ′ is additional signature data. We require that σ′

is constant size, that is, independent of the size of J . A verification algorithm Vf(pk,m, σ) verifies
the aggregate signature using the list of n public keys in pk. Finally, it is convenient to include an
explicit tracing algorithm Trace(m,σ)→ J that traces an aggregate signature σ to the set of parties
that generated it. This algorithm simply parses σ as (σ′,J) and outputs J ⊆ [n]. Informally, the
signature scheme is secure if a coalition of n− 1 corrupt parties cannot produce a valid aggregate
signature σ that frames the remaining party for signing a message m which it did not sign. Note
that the corrupt parties may choose their public keys adversarially in what is called a rogue public
key attack. We give precise definitions in the next section. As shorthand, we will refer to an n-party
accountable multisignature scheme simply as a multisignature scheme.

The tracing algorithm provides accountability: when a valid signature σ on some rogue mes-
sage m is found, the tracing algorithm will reveal the subset of parties that generated σ so that
they can be held accountable. This property is required in proof-of-stake consensus [DGKR18,
GHM+17, Smi22] so that the parties who generated the rogue signature will lose their committed
stake. Accountability implies that a signature must encode the signing set J . In all our construc-
tions the signature contains an explicit description of the signing set J . This lets the verifier choose

the signing sets for which it accepts the signature as valid: the verifier could enforce a (weighted)
threshold requirement on the signing set, or it could choose to implement a more sophisticated
validity policy on J .

Accountable multisignatures were defined by Micali, Ohta, and Reyzin [MOR01] and since
then several constructions have been proposed. Some are based on discrete-log [BN06, NRS21],
some are based on pairings [Bol03, BGLS03, LOS+06, RY07, BDN18, BCG+23], some are based
on lattices [FH20, DOTT21, BTT22], and some are based on generic SNARKs [DFKP16]. The
discrete-log and lattice constructions require rounds of interaction among the signers and do not
support post-signing aggregation. In the pairing based constructions, aggregation does not require
the original signers to be present, so that anyone can aggregate signatures. Moreover, the aggregate
signature data σ′ is constant size. This also holds for the SNARK-based construction, but its
performance is much worse than the pairing-based schemes. The most widely used multisignatures
in proof-of-stake consensus are based on BLS signatures [BLS01].

In all these algebraic constructions, the verifier needs to store the list of all n signer public keys
to verify a multisignature. For example, in BLS multisignatures, the verifier uses a description of the
signing set J to compute an aggregate public key apk by computing apk :=

∏
i∈J pki, and uses this

apk to verify the aggregate signature. Computing apk for an arbitrary set J requires storing the
entire vector pk = (pk1, . . . , pkn). Interestingly, the SNARK-based multisignature scheme [DFKP16]
can be easily adapted so that the verifier only needs a constant size verification key: a collision-
resistant hash of pk along with a constant-size SNARK verification key. However, as mentioned
above, these multisignatures are difficult to use even for a moderately large n.

Our results. We define a new type of multisignature scheme that greatly reduces the amount
of information that the verifier needs to store. In particular, we introduce a new key aggregation
algorithm, KeyAgg(pk) → (pkc, vk), that takes as input pk = (pk1, . . . , pkn) and outputs a public
signature aggregation key pkc and a constant size verification key vk.

– The key pkc is used by the signature aggregation algorithm SigAgg which is now invoked as
SigAgg(pkc, {σi}i∈J) to form the aggregate signature σ.

– The short verification key vk is used by algorithm Vf(vk,m, σ) to verify signatures.

In other words, once the verifier runs KeyAgg on pk = (pk1, . . . , pkn) it no longer needs to store
this vector of keys. It suffices to only store vk which is constant size, and can be used to verify
signatures generated by any set J ⊆ [n]. Alternatively, a trusted party could compute vk from pk,
and give vk to the verifier, in which case the verifier never needs to see the vector pk. In our first
two schemes, the aggregation key pkc has linear size in n, which is fine because it is only used by
the signature aggregator who anyhow handles a linear number of signature shares from the signers.
In our third and fourth schemes pkc is empty, but these schemes require a simple distributed key
generation protocol (DKG).

Our first scheme is a new pairing-based multisignature whose security is proved in the random
oracle model based on a variant of the Bilinear Diffie-Hellman (BDH) problem. As mentioned above,
pkc is linear size, while vk and the final signature data σ′ are constant size. Our multisignature
scheme is based on the signature scheme due to Boneh and Boyen [BB04, BB11], called the BB
signature scheme (obtained from the first IBE system in their paper). We generalize this scheme
to make it into a multisignature with a constant size verifier key vk.

Our second scheme modifies the first scheme to prove security in the plain model (i.e., without
relying on random oracles), while preserving the properties of the first scheme. Our first scheme
uses two random oracles, and both need to be instantiated concretely. We instantiate one with an

2

algebraic hash using an approach similar to Boneh and Boyen [BB04, BB11] or Waters [Wat05].
We instantiate the second random oracle by using suitable values derived from the underlying
complexity assumption. This approach shows that the random oracle proof was only using min-
imal properties of this second random oracle, in a way reminiscent of the work of Hofheinz and
Kiltz [HK08, HK12]. We prove security in the plain model based on an assumption we call the
n-BDH assumption.

Next, we look at multisignatures with a constant size verifier key, but where we allow for a
distributed key generation (DKG) protocol among the signers at setup (in our first two schemes
the parties generated their keys locally; there was no need for a DKG among them). In Section 5
we describe such a pairing-based scheme where the benefit of introducing a DKG is that there is
no longer a need for a signature aggregation key pkc. Signature aggregation is done using only the
supplied (constant-size) signatures from the signers.

Once we introduce a DKG, the security model changes and becomes more closely related to
the security model for a threshold signature scheme (e.g., as in [BS23]). After setup the adversary
can fully corrupt some parties by requesting their signing keys, and is provided with a signing
oracle for the remaining parties. As before, the scheme is secure if the adversary cannot create a
valid aggregate signature on a message m that traces to a non-corrupt party who did not sign m.
We prove security of the scheme in Section 5 in a fully adaptive model where the adversary can
adaptively choose which parties to corrupt. The proof is based on the BDH assumption in the
random oracle model. We note that several recent works prove adaptive security for standard
threshold signatures [BL22,CKM23,DR23].

Our final scheme, presented in Section 6, is another multisignature with a constant size verifier
key and a DKG, but this time based on lattices. Our starting point is a recent multisignature
scheme due to Damg̊ard, Orlandi, Takahashi, and Tibouchi [DOTT21]. We adapt the scheme to
make it have a constant-size verification key. However, unlike our earlier schemes, the signing process
requires interaction among the signers, and the signers need to know the signing set J .
Related work. Two recent papers, one by Das et al. [DCX+23] and one by Garg et al. [GJM+23],
also presented a multisignature scheme with a short verification key. While the schemes presented
in these papers are not accountable (there is no way to trace a valid signature), they can be
made accountable by increasing the length of the signature. Their constructions are based on BLS
multisignatures, where the work to compute the aggregate public key apk :=

∏
i∈J pki is shifted

from the verifier to the aggregator. The aggregator includes apk in the aggregate signature along
with a proof that it was computed correctly. As a result, their verifier key vk is longer than ours, as
is the aggregate signature which includes apk and a proof that apk is valid. Both schemes rely on a
one-time trusted setup to generate a structured reference string (SRS) used to prove validity of apk .
The schemes in this paper do not require a trusted setup. Table 1 compares our constructions to
other pairing-based multisignature schemes.

Proactive refresh. A recent result [BPR22] shows how to proactively refresh the key shares of an
accountable threshold signature scheme without changing the public key. Our third multisignature
scheme (Section 5) fits well into their two-level construction, to obtain a proactively refreshable
threshold scheme that achieves their strongest level of accountable security. We discuss this further
in Appendix B.

Multisignatures vs. aggregate signatures. Multisignatures, the topic of this paper, compress
signatures by multiple parties on the same message into a single short signature. Aggregate sig-
natures [BGLS03,GR06,BNN07] can compress signatures by multiple parties on possibly different

3

one-time
sig size trusted KeyAgg SigAgg
overhead vk size pkc size DKG RO setup time time

BLS multisigs [Bol03] 1G nG 0 no yes no 0 O(|J |)
BB multisigs [LOS+06] 2G nG 0 no no no 0 O(|J |)
SNARK [Gro16,DFKP16] 3G 7G poly(λ, n) no yes yes O(n) poly(λ, n)
Das et al. [DCX+23] 8G 7G nG no yes yes O(n2) O(n)
Garg et al. [GJM+23] 9G 6G nG no yes yes O(n2) O(n)

This work (Section 3) 2G 1G nG no yes no O(n2) O(|J |)
This work (Section 4) 2G 1G nG no no no O(n2) O(|J |)
This work (Section 5) 2G 1G 0 yes yes no 0 O(|J |)
Remark 6 (Section 3) 2G

√
n G nG no yes no O(n1.5) O(|J |)

Table 1. Comparing pairing-based multisignature constructions. The numbers indicate the number of pairing group
elements. For signature size we measure the signature data overhead beyond the description of the signing set J . The
DKG column indicates whether a distributed key generation is needed to generate keys, the RO column indicates
whether the proof of security is set in the random oracle model, and the setup column indicates whether a one-time
trusted setup is needed to generate a reference string. The columns KeyAgg time and SigAgg time indicate the time to
aggregate n public keys into pkc and the time to generate the final aggregate signature, respectively. The SNARK row
corresponds to a multisignature built from the Groth16 SNARK [Gro16]. The numbers for the [DCX+23,GJM+23]
rows are for their non-accountable scheme; adding accountability makes the parameters worse.

messages into a single short signature. In either case there is a preference for schemes where ag-
gregation can be done after the signers have generated their signatures. That is, there is no need
to involve the signers in the aggregation process. A weaker notion of aggregate signatures, called
sequential aggregate signatures [LMRS04,LOS+06,FLS12,BGR12,GOR18,EB14], enables n signers
to sign n messages in sequence, one after the other. For i = 2, . . . , n, signer number i receives the
latest aggregate from signer (i− 1), adds its signature on message mi to the aggregate, and passes
the resulting aggregate to the next signer. The last signer, signer number n, obtains the final short
aggregate signature, and this aggregate signature commits signer i to message mi for all i ∈ [n].

2 Preliminaries

Notation. For an integer n ∈ N we use [n] to denote the set {1, . . . , n}. For a distribution X we
denote by x←$ X the process of sampling a value x from the distribution X. Similarly, for a finite
set X we denote by x←$ X the process of sampling a value x from the uniform distribution over X .
We denote matrices by boldface capital letters, e.g. A, and vectors in boldface lower-case letters,
e.g. w. We may use a non-bold capital letter, e.g. A or V , to describe a matrix or a vector, when
we wish to emphasize that this matrix or vector is being treated as a random variable.

2.1 Multisignatures with Local Key Generation

We begin by defining secure multisignature schemes, where each signer generates its signing key
locally. Similarly, signature shares are generated without interacting with the other signers. In
Appendix A we define schemes that allow interaction during signing. This is needed for our lattice-
based scheme in Section 6.

Syntax. A multisignature scheme (MS) with local key generation is a tuple of PPT algorithms
MS = (Setup, LocalKeyGen,KeyAgg, Sign, SigAgg, Vf,Trace), where:

– Setup(1λ, n) → pp: a one-time global setup algorithm that takes as input the number of par-
ties n ≤ n(λ), for some polynomial n(·), and outputs public parameters pp, which are an implicit
input to all the remaining algorithms.

4

– LocalKeyGen(i)→ (pki, ski): takes as input an index i ∈ [n] and outputs a public key pki and a
corresponding secret key ski.

– KeyAgg
(
pk = (pk1, . . . , pkn)

)
→ (pkc, vk): a deterministic algorithm that aggregates n public

keys into a public aggregation key pkc and a verifier key vk. It may output ⊥ if any of the input
public keys are invalid.

– Sign(ski,m)→ si: signs the message m using key ski and outputs signature share si.

– SigAgg(pkc, {si}i∈J) → σ: a deterministic algorithm that combines the given signature shares
into a complete signature σ, possibly using a public aggregation key pkc. Outputs ⊥ if any of
the input signatures are invalid.

– Vf(vk,m, σ): a deterministic verification algorithm that outputs 1 (implying acceptance) or 0
(implying rejection).

– Trace(m,σ)→ J : a deterministic algorithm that traces a signature σ to a subset J ⊆ [n] that
generated σ.

These algorithms must satisfy the following verification correctness and tracing correctness prop-
erties: for all messages m in the message space M, all polynomials n = n(λ), and all non-empty
subsets J ⊆ [n], it holds that

Pr

[
Vf
(
vk,m,SigAgg(pkc, {Sign(skj ,m)}j∈J)

)
= 1,

pkc ̸= ⊥, vk ̸= ⊥

]
= 1,

Pr

[
Trace

(
m,SigAgg(pkc, {Sign(skj ,m)}j∈J)

)
= J ,

pkc ̸= ⊥, vk ̸= ⊥

]
= 1,

where the probability is over the random variables pp←$ Setup(1λ, n),
(pki, ski) ←$ LocalKeyGen(i) for all i ∈ [n], (pkc, vk) ← KeyAgg((pk1, . . . , pkn)), and the random
coins of Sign.

Security Notions. A multisignature scheme with local key generation should be unforgeable,
even in the face of rogue public key attacks. An adversary is allowed to generate public keys for
all but one honest party, and is allowed to query signatures of this honest party on any message
of its choice. Unforgeability requires that such an adversary should not be able to produce a valid
signature on a message m on behalf of a subset J that includes this honest party, without observing
its secret key or its signature share on m.

For a multisignature scheme MS, the unforgeability requirement is captured by the security
game, Game Guf

MS, in Figure 1. The adversary first sends the number of signers n to the challenger,
which then runs Setup and sends the public parameters pp to the adversary. The adversary responds
with the index i∗ ∈ [n] for the honest party. This is followed by the challenger sampling a key for
the honest party using the LocalKeyGen(i∗) procedure. The adversary then issues signature queries
for messages of its choice, and receives back signatures on these messages with respect to the secret
key of party i∗. Finally, the adversary should produce (i) a list of n valid public keys that includes
the honest public key at index i∗ and (ii) a valid forgery, that is, a message m∗ for which it did not
issue a signature query, and a valid signature σ∗ on m∗.

We denote by Guf
MS,A(λ) the output of Game Guf

MS when executed with an adversary A and
security parameter λ. It is a random variable defined over the random bits of bothA and the random
choices of the game’s main procedure and oracles. With this notation, the following definition
captures security for a multisignature scheme.

5

Game Guf
MS with respect to an adversary A and security parameter λ

1 : (st, n)← A(λ)
2 : pp←$ Setup(1λ, n); Qsig ← ∅
3 : (st, i∗)← A(st, pp) // i∗ ∈ [n] is the user index to attack

4 : (sk∗, pk∗)←$ LocalKeyGen(i∗) // pk∗ is the public key of party i∗

5 :
(
(pk∗1, . . . , pk

∗
n),m

∗, σ∗)←$ASignO(·)(st, pk∗) //
The forgery from the adversary;
we require on line 9 that pk∗i∗ = pk∗.

6 : (pkc∗, vk∗)← KeyAgg
(
(pk∗1, . . . , pk

∗
n)
)

7 : if pkc∗ = ⊥ ∨ vk∗ = ⊥ then // if key aggregation failed

8 : return 0

9 : if pk∗ ̸= pk∗i∗ ∨ Vf(vk∗,m∗, σ∗) = 0 ∨ m∗ ∈ Qsig then // if forgery is invalid

10 : return 0

11 : if i∗ ̸∈ Trace(m∗, σ∗) then

12 : return 0

13 : return 1

Oracle SignO(m)

1 : σ ← Sign(sk∗,m)

2 : Qsig ← Qsig ∪ {m}
3 : return σ

Fig. 1. The security game Guf
MS for a multisignature scheme MS = (Setup, LocalKeyGen,KeyAgg, Sign, SigAgg,Vf,

Trace).

Definition 1. A Multisignature scheme MS is said to be secure if for all PPTadversaries A, the
following function is negligible in λ:

AdvufMS,A(λ) := Pr
[
Guf

MS,A(λ) = 1
]
.

The security definition above extends to the random oracle model by granting all algorithms,
including the adversary A, oracle access to a function H chosen uniformly at random from a family
H of functions. In the correctness and security requirements (Definition 1), all probabilities are
then also taken over the random choice of H.

Remark 1 (User adaptivity). The adversary in Figure 1 is required to choose the user index i∗ to
attack at the beginning of the game (Line 3). This does not limit the adversary’s adaptivity. The
game can be easily modified so that the adversary sends i∗ along with its forgery on Line 5. The
two definitions are equivalent because the challenger can guess i∗ on Line 3 and abort if it guessed
incorrectly. This adds at most a factor of O(n) to the adversary’s advantage. We chose to use the
definition where i∗ is selected on Line 3 since it eliminates the need to guess an i∗ in the security
proofs.

6

3 An Efficient Multisignature Scheme With a Short Verification Key

We now describe a multisignature scheme with constant size verification key vk and short signatures.
The scheme uses a linear size aggregation key pkc.

The scheme is described in Figure 2. The public parameters include an asymmetric bilinear
group (G1,G2,GT , e, g1, g2, p), where G1,G2 are cyclic groups of prime order p generated by g1, g2
respectively, and e : G1 × G2 → GT is an efficiently computable non-degenerate bilinear map. We
use GroupGen(1λ) → (G1,G2,GT , e, g1, g2, p) to denote a bilinear group generator that outputs an
asymmetric bilinear group. Our scheme also relies on two hash functions H0 :M→ G1 whereM
is the message space, and H1 : [n]→ G1, where n is an upper bound on the number of signers. We
will model these hash functions as random oracles in the proof of security.

Remark 2 (On synchronizing slot numbers). The parties in this scheme generate their secret keys
locally. However, each of the n parties needs to choose a unique slot number in {1, . . . , n}. This can
be done by publishing a counter on a public bulletin board, initialized at zero. Every party that
joins the system increments the counter by one and uses its current value as its slot number.

Remark 3 (Adding and removing parties). Whenever a party joins the system as a signer, it will
publish its pki. The signature aggregator will check validity of pki (step 2 of KeyAgg in Figure 2)
and if valid, it will aggregate this pki into its current signature aggregation key pkc. Every verifier
will similarly check validity of pki and aggregate pki,0 into its vk. When party j leaves the system,
and no longer issues signatures, the only change is that it tells the signature aggregators to delete
cell number j of pkc, since it is no longer needed.

Correctness. First, we see why honestly generated public keys are valid. Observe that for every
i ∈ [n] and j ∈ [n] \ {i}, we have that

e(pki,j , g2) = e(H1(j)
αi , g2) = e(H1(j), g

αi
2) = e(H1(j), pki,0).

Hence, for honestly generated keys, the procedure KeyAgg will output a valid pkc and vk. Next,
observe that for an honestly generated signature (σ0, σ1,J), we have,

e(σ1, g2) = e(
∏
j∈J

(σj,1 · pkcj), g2)

= e

∏
j∈J

H1(j)
αj · H0(m)rj,m ·

∏
i∈[n]\{j}

H1(j)
αi

 , g2

= e

∏

j∈J
H1(j)

Σi∈[n]αi

· H0(m)Σj∈J rj,m , g2

= e

∏
j∈J

H1(j), g
Σi∈[n]αi

2

 · e(H0(m), g
Σj∈J rj,m
2

)

= e

∏
j∈J

H1(j), vk

 · e (H0(m), σ0)

7

The Multisignature scheme SIG1 with local key generation

Setup(1λ, n) :

1. Sample a bilinear group (G1,G2,GT , e, g1, g2, p)←$ GroupGen(1λ).
2. Output pp← (n,G1,G2,GT , e, g1, g2, p).
3. The system uses two hash functions: H0 :M→ G1 and H1 : [n]→ G1.

LocalKeyGen(i ∈ [n]):

1. Sample αi ←$ Zp. Set ski ← αi.
2. For all j ∈ [n] \ {i}, compute pki,j ← H1(j)

αi .

3. Output pki ← (gαi
2 , {pki,j}j∈[n]\{i}) ∈ G2 ×Gn−1

1 .

KeyAgg(pk = (pk1, . . . , pkn)):

1. For each i ∈ [n], parse pki as (pki,0, {pki,j}j∈[n]\{i}).

2. For each i ∈ [n] and j ∈ [n] \ {i}, if e(H1(j), pki,0) ̸= e(pki,j , g2), output ⊥.
3. Compute pkci ←

∏
j∈[n]\{i} pkj,i ∈ G1, for all i ∈ [n].

4. Output (pkc← {pkci}i∈[n] ∈ Gn
1 , vk←

∏
i∈[n] pki,0 ∈ G2).

// observe that pkci = H1(i)
Σj∈[n]\{i}αj ∈ G1 and vk = g

Σj∈[n]αj

2 ∈ G2.

Sign(ski, m ∈M):

1. Parse ski as αi.
2. Sample ri,m ←$ Zp. Compute σi,0 ← g

ri,m
2 and σi,1 ← H1(i)

αi · H0(m)ri,m .
3. Output σi = (σi,0, σi,1) ∈ G2 ×G1.

SigAgg(pkc, {σj}j∈J):

1. For each j ∈ J , parse σj as (σj,0, σj,1). Parse pkc as {pkci}i∈[n].

2. Compute σ0 ←
∏

j∈J σj,0.

3. For each j ∈ J , compute σ̂j,1 ← σj,1 · pkcj .
4. Output σ = (σ0, σ1 ←

∏
j∈J σ̂j,1, J).

// observe that σ̂j,1 is equal to H1(j)
Σi∈[n]αi · H0(m)rj,m .

Vf(vk,m, σ):

1. Parse σ as (σ0, σ1,J).
2. Output 1 if e(σ1, g2) = e(H0(m), σ0) · e(

∏
j∈J H1(j), vk).

Trace(m,σ):

1. Parse σ as (σ0, σ1,J) and output J ⊆ [n].

Fig. 2. The Multisignature scheme SIG1 with local key generation

8

We see that an honestly generated signature will pass the checks in Vf, implying correctness and
trace correctness.

Security. We next prove security of the multisignature scheme SIG1 using the co-Bilinear Diffie-
Helman assumption, assuming H0 and H1 are modeled as random oracles. Let us first define the
co-Bilinear Diffie-Helman assumption.

Definition 2. Let G be an asymmetric bilinear group generator. The co-BDH assumption holds
with respect to G if, for all probabilistic polynomial time adversaries A, the following function is
negligible in λ:

Advco-bdhG,A (λ) := Pr
[
A(G1,G2,GT , e, p, g1, g2, g

a
1 , g

a
2 , g

b
1, g

b
2, g

c
1, g

c
2) = e(g1, g2)

abc
]

where the probability is taken over the random choice of generators g1, g2 of G1,G2 respectively, the
random choice of exponents a, b, c ∈ Zp, and the random bits used by A.

Theorem 1 below reduces the security of SIG1 to the hardness of the co-Bilinear Diffie-Helman
problem. If we were using a symmetric pairing, then it would be possible to reduce security to the
Computational Diffie-Helman (CDH) problem in the source group. But when using an asymmetric
pairing, it is more convenient to use co-Bilinear Diffie-Helman.

Theorem 1. Let G be an asymmetric bilinear group generator. Then, for every adversary A, there
exists an adversary B with about the same running time as A such that,

AdvufSIG1,A(λ) ≤ 2e(qS + 1) · Advco-bdhG,B (λ) (1)

where qH = qH(λ) and qS = qS(λ) are a bound on the number of queries issued by A to H0 and
SignO oracles respectively, and e ≈ 2.71. We assume that 2(qS + qH) < p, where p = p(λ) is the
size of the groups output by G.

Remark 4 (Proof of possession). Theorem 1 shows that our multisignature scheme SIG1 is secure
against rogue key attacks, where the adversary chooses its public keys adversarially. There are a
number of techniques for preventing these attacks: message augmentation [BGLS03,BNN07], proof
of possession [RY07], and linear combinations [BDN18]. In the scheme SIG1, the public key pki that
party i generates implicitly contains multiple proofs of possession of the secret key. This is used
in a crucial way in the proof of Theorem 1 to obtain a solution to the co-BDH problem from the
adversary’s forged multisignature.

Proof of Theorem 1. We construct a co-BDH algorithm B. This B takes as input an asymmetric
group description (G1,G2,GT , e, g1, g2, p) along with

(
ga,1 = ga1 , ga,2 = ga2 , gb,1 = gb1, gb,2 =

gb2, gc,1 = gc1, gc,2 = gc2
)
from its challenger. It then invokes A and plays the role of challenger to

A in the game Guf
SIG1

as follows:

1. Receive n from A and send pp← (n,G1,G2,GT , g1, g2, e, p) to A.
2. Receive i∗ ∈ [n] from A.
3. Sample β1, . . . , βi∗−1 , βi∗+1, . . . , βn ←$ Zp.

4. Set pk∗ ← (ga,2, {g
βj

a,1}j∈[n]\{i∗}). Send pk∗ to A. This means that sk∗ is equal to a, but this
value is unknown to B. We will show that this pk∗ is valid once we describe how we program
the random oracle H1.

9

Next, A issues a sequence of random oracle and signing queries. We use qS and qH to denote
an upper bound on the number of signing queries and random oracle queries on H0 issued by A
respectively. Note that the number of queries to H1 is bounded by n, the size of the domain of H1.
B responds to these queries by maintaining the following data structures:

– B initializes the simulated oracles by setting H1(j)← ⊥ for all j ∈ [n], and H0(m)← ⊥ for all
m ∈M.

– B maintains two mappings R : M → Zp and R′ : M → {0, 1} to track auxiliary information
used to answer H0 queries. Both R and R′ are initialized with ⊥ for all messages.

– For signing queries, B stores a set Qsig to store all the messages m for which A queries SignO(m).
This set is initialized with ∅.

– B samples a random message δ ←$M.

We next explain how B responds to each of A’s queries:

– A query for H0(m). If m = δ, then B aborts. Otherwise, if H0(m) has been queried before, i.e.
if H0(m) ̸= ⊥, then, B returns the value H0(m). If not, B samples xm ←$ [qS +1] and γm ←$ Zp

uniformly at random. We use xm as a biased coin that is equal to 1 with probability 1/(qS +1).

• If xm ̸= 1, then it sets R(m)← γm , R′(m)← 0 and H0(m)← gγm1 · gm−δa,1 .

• If xm = 1, it sets R(m)← γm , R′(m)← 1 and H0(m)← gγm1 .

B returns H0(m) to A and continues the game. Note that since γm is sampled randomly from
Zp, the value H0(m) is uniform in G1 as required.

– A query for H1(j). If j ̸= i∗, then B returns g
βj

1 . Otherwise, B returns gb,1. Note that since all
the βj values are sampled randomly, H1(j) will be indistinguishable from random for A. Also,
observe that the pk∗, as defined in Step 4 above, is indeed valid because for all j ∈ [n] \ {i∗},
pk∗i∗,j = H1(j)

αi∗ , which is equal to (g
βj

1)αi∗ and since sk∗ = αi∗ = a, we get that (g
βj

1)αi∗ =

g
aβj

1 = g
βj

a,1.

– A query for SignO(m). B first queries H0(m) and aborts if R′(m) = 1. At this point we can
assume that m ̸= δ, since otherwise B would have aborted when querying for H0(m). Next, B
samples r ←$ Zp and generates a signature as follows:

(σm,0 ← gr2 · g
−1

m−δ

b,2 , σm,1 ← H0(m)r · g
−R(m)
m−δ

b,1)

Here, R(m) is the value of γm that was sampled by B when responding to the H0(m) query.
Note that R(m) cannot be ⊥ since B queries H0(m) during any signing query on m.

We claim that this signature is distributed identically to a real signature generated by sk∗. To
see why, set r̃ ← r − b

m−δ ∈ Zp. Then,

σm,0 = gr2 · g
−1

m−δ

b,2 = gr2 · g
−b

m−δ

2 = gr̃2

σm,1 = H0(m)r · g
−R(m)
m−δ

b,1 = H0(m)r̃ · H0(m)
b

m−δ · g
−R(m)
m−δ

b,1

= H0(m)r̃ · (gγm1 · gm−δa,1)
b

m−δ · g
−γm
m−δ

b,1

= H0(m)r̃g
bγm
m−δ

1 gab1 · g
−bγm
m−δ

1 = H0(m)r̃ · gab1

10

Next, observe that sk∗ = a, and since H1(i
∗) = gb,1, we get that H1(i

∗)a = gab,1 = gab1 . This

means that, the above signature is of the form (gr̃2, H0(m
∗)r̃ ·H1(i

∗)sk
∗
), and r̃ is uniform in Zp

as required. Hence, it is a valid response to the signing query. Lastly, B adds m to the list Qsig.

Eventually, A outputs a list of public keys (pk∗1, . . . , pk
∗
n) and a forgery (m∗, (J ∗, σ∗0, σ∗1)). Our B

examines A’s output and aborts if pk∗ ̸= pk∗i∗ , or if m
∗ ∈ Qsig, or if i

∗ ̸∈ J ∗. Note that A’s forgery
is invalid if either of these conditions are true. Our B also aborts if R′(m∗) = 0.

Otherwise, B runs the key aggregation procedure to get

(pkc∗, vk∗)← KeyAgg((pk∗1, . . . , pk
∗
n)).

It aborts if pkc∗ or vk∗ are ⊥ or if Vf(vk∗,m∗, σ∗) = 0. Observe that A’s forgery is invalid if either
of these conditions are true. Lastly, B computes β∗ ← Σk∈J ∗\{i∗}βk and responds with:

W :=
e(σ∗1, gc,2)

e(g
R(m∗)
c,1 , σ∗0) ·

∏
j∈[n]\{i∗} e(pk

∗
j,i∗ , gc,2) · e(g

β∗

c,1, vk
∗)
∈ GT . (2)

This completes the description of the co-BDH adversary B.
We claim that if B did not abort, then the quantity W output by B is a correct response to the

given co-BDH challenge, namely W = e(g1, g2)
abc. To see this, observe the following. First, if A’s

forgery is valid, namely Vf(vk∗,m∗, σ∗) = 1, then

e(σ∗1, g2) = e(H0(m
∗), σ∗0) · e(

∏
j∈J ∗

H1(j), vk
∗)

= e(g
R(m∗)
1 , σ∗0) · e(gb,1 ·

∏
j∈J ∗\{i∗}

g
βj

1 , vk∗)

= e(g
R(m∗)
1 , σ∗0) · e(gb,1 · g

β∗

1 , ga,2 ·
∏

j∈[n]\{i∗}

pk∗j,0)

= e(g
R(m∗)
1 , σ∗0) · e(gb,1, ga,2) · e(gb,1,

∏
j∈[n]\{i∗}

pk∗j,0) · e(g
β∗

1 , vk∗) (3)

Next, since KeyAgg output a pkc∗ this is not ⊥, we know that all n public keys output by A are
valid. Hence, for all j ∈ [n] \ {i∗}, we have that,

e(gb,1, pk
∗
j,0) = e(H1(i

∗), pk∗j,0) = e(pk∗j,i∗ , g2).

Using this relation in (3) gives:

e(σ∗1, g2) = e(g
R(m∗)
1 , σ∗0) · e(gb,1, ga,2) ·

∏
j∈[n]\{i∗}

e(pk∗j,i∗ , g2) · e(g
β∗

1 , vk∗).

Solving for e(gb,1, ga,2) we get

e(gb,1, ga,2) =
e(σ∗1, g2)

e(g
R(m∗)
1 , σ∗0) ·

∏
j∈[n]\{i∗} e(pk

∗
j,i∗ , g2) · e(g

β∗

1 , vk∗)

11

Raising both sides to the power c gives us:

e(g1, g2)
abc = e(gb,1, ga,2)

c =
e(σ∗1, g2)

c

e(g
R(m∗)
1 , σ∗0)

c ·
∏

j∈[n]\{i∗} e(pk
∗
j,i∗ , g2)

c · e(gβ
∗

1 , vk∗)c

The right hand side is exactly the value W computed by B in (2). This proves that if B does not
abort, then B responds correctly to the given co-BDH challenge.

We next bound the probability that B aborts. Let Abort be the event in which B aborts. We
have that,

Advco-bdhG,B (λ) = Pr
[
Abort

]
.

We next analyse the abort probability. Let EA be the event that B aborts because pk∗ ̸= pk∗i∗ or
m∗ ∈ Qsig or i∗ ̸∈ J ∗ or pkc∗ = ⊥ or vk∗ = ⊥ or Vf(vk∗,m∗, σ∗) = 0. We have that, Pr[EA] ≥
AdvufSIG1,A(λ) because the adversary A can win only if none of these conditions hold. Let E1 be
the event that B aborts because A queries H0 on δ. Let E3 be the event that B aborts during a
signing query because R′(m) = 1. Let E4 be the event that B aborts because R′(m∗) = 0. Observe
that Pr[E1] ≥ 1 − qS+qH

p , since B implicitly queries H0(m) whenever A queries SignO(m). Next,

Pr[E3|E1] =
(
1− 1

qS+1

)qS
≥ 1

e , since R′(m) is set to 1 with a probability 1
qS+1 for all m ∈ M.

Similarly, we have that Pr[E4|E1] =
1

qS+1 . This gives us,

Advco-bdhG,B (λ) = Pr
[
Abort

]
= Pr

[
E1 ∧ E3 ∧ E4 ∧ EA

]
= Pr

[
E1

]
· Pr[E3|E1] · Pr[E4|E1] · Pr

[
EA
]

≥
(
1− qS + qH

p

)
· 1
e
· 1

qS + 1
· AdvufSIG1,A(λ)

Lastly, since we assumed that 2(qS + qH) < p, we have that,(
1− (qS + qH)

p

)
≥ 1

2

which proves the bound in (1) and completes the proof. ⊓⊔

Remark 5 (On the runtime of KeyAgg). The runtime of the key aggregation procedure KeyAgg is
O(n2) since it verifies that the terms pki,j for all i ̸= j are valid. At first glance, it might seem that
verifying only one term for each party would be sufficient. But one can show that there is an attack
that allows the adversary to forge a signature and blame an honest party i∗ if there is at least one
party j for which the i∗th term pkj,i∗ is not verified in KeyAgg. The attack is similar to the rogue
public key attack. This shows the necessity for KeyAgg to verify all the O(n2) terms contained in
the n public keys given to it as input. However, the number of pairing computations needed can
be significantly reduced: only two pairings are needed to verify each public key. For each provided
public key pki, algorithm KeyAgg samples a random vector of length n − 1 as r ←$ [B]n−1 where
B ≪ p, and then combines all the checks for party i into a single equation requiring only two
pairings:

e

 ∏
j∈[n]\{i}

H1(j)
r[j], pki,0

 = e

 ∏
j∈[n]\{i}

pk
r[j]
i,j , g2

 .

12

This modification increases the advantage of the adversary by at most an additive factor of O(n/B),
which follows from [BGR98, Th 3.3]. As a result, adding a new user to the system requires only
two pairing computations.

Remark 6 (A faster KeyAgg procedure). We can improve the running time of the KeyAgg procedure
by dividing the parties into blocks of size b ∈ [n], for some parameter b such as b := ⌈

√
n ⌉. We

assign party i to block number ⌈i/b⌉. Then, in LocalKeyGen(i), party i computes pki,j = H1(j)
αi

only for parties j ∈ [n] \ {i} that are in the same block as i. This means that pki now contains
only b group elements (as opposed to n group elements in Figure 2). In KeyAgg, we now only need
to verify these b group elements for each party, meaning that KeyAgg now runs in time O(n · b).
Entry i in pkc is now computed by multiplying pkj,i terms for all parties j ∈ [n] \ {i} that are in
the same block as i.

We obtain a faster KeyAgg procedure, but this comes at the cost of a larger verification key vk,
which must now contain ⌈n/b⌉ group elements (as opposed to a single group element in Figure 2).
Specifically, for each block k ∈ ⌈n/b⌉, let Bk = {i : i ∈ [n]∧⌈i/b⌉ = k} be the set of all parties in this
block. Then, the verification key will have an element vkk =

∏
i∈Bk pki,0 for each block k ∈ ⌈n/b⌉.

The Sign and SigAgg procedures remain the same as in Figure 2. The Vf procedure accepts a
signature (σ0, σ1) on a message m if

e(σ1, g2) = e(H0(m), σ0) ·
∏

k∈⌈n/b⌉

e
(∏
j∈Bk∩J

H1(j), vkk

)
.

This means that Vf now needs to do upto min(|J |, ⌈n/b⌉)+2 pairings to verify a signature, with the
exact number depending upon how many blocks have at least one party in common with the signer
set J . The proof of correctness and security for this scheme is similar to the proof of Theorem 1
using the same complexity assumption.

To summarize, the parameter b provides a tunable trade-off between the runtime of KeyAgg and
the size of the verification key vk. For example, setting b = ⌈

√
n ⌉ gives an n-user KeyAgg with a

runtime of O(n1.5), as opposed to the O(n2) runtime in Figure 2, but at the cost of a verification
key of ⌈

√
n ⌉ group elements.

Remark 7 (An Improved Multiverse Threshold Signature). Baird et al. in [BGJ+23] define the no-
tion of a multiverse threshold signature scheme (MTS) where they refer to a set of signers as a
universe, and multiple “universes” can co-exist, each having its own threshold, and containing a
subset of all signers. Our signature scheme SIG1 can be used as the per-universe threshold signature
scheme to instantiate an accountable MTS. This scheme has the following properties: (i) the secret
key of each signer is a single field element, and the signer needs to sign only once, independent of
the number of universes it is part of, (ii) the per-universe aggregate signature would be two group
elements and the signer set description, (iii) each party can generate its own key-pair, which will
be re-usable across different universes, and lastly, (iv) we can support any access structure for each
universe, since the signer set is included in the signature. The security analysis of [BGJ+23] extends
to our multisignature scheme.

4 A Multisignature without Random Oracles

We next describe a scheme SIG2 with similar efficiency as the scheme SIG1 from the previous section,
but without relying on random oracles. Recall that SIG1 used two random oracles: H0 and H1. We

13

instantiate the H0 random oracle with an algebraic hash, using an approach similar to Boneh
and Boyen [BB04,BB11]. That is, we define H0(m) = vm0 h0 for random group elements v0, h0 ∈ G1

chosen at setup. We instantiate H1(i) using elements provided by our complexity assumption, which
we call the n-Bilinear Diffie Helman assumption (Definition 3). In essence, we set H1(i) to be some
precomputed generator of G1, for all i ∈ [n].

To keep the verifier’s memory to a constant we need to ensure that both the scheme’s public
parameters pp and verification key vk are constant size. In the previous section we used the random
oracle H1(·) to map the integers 1, . . . , n to random group generators u1, . . . , un ∈ G1. In the
security proof we had to program the random oracle H1 to make it possible to reduce security to
the co-BDH assumption. In this section, we cannot do that. Instead, we make the bilinear group
generator output the description of the bilinear groups G1 and G2 along with fixed generators
u1, . . . , un ∈ G1. These generators can be computed as needed using a concrete hash function, say
ui := MapToGroup(sha256(i)) for i ∈ [n], and are not part of pp or vk. As a result, we now have
a problem in the security proof: the reduction can no longer choose these generators during setup
because they are fixed by the group generator. Consequently, we can no longer reduce security to the
co-BDH assumption. Instead, we define a stronger assumption called the n-Bilinear Diffie-Helman
assumption that makes it possible to prove security.

First, let us define two extended GroupGen(·) procedures called NGroupGen and FullNGroupGen:

– NGroupGen(1λ, n) → (G1,G2,GT , e, g1, g2, p, {ui}i∈[n]) outputs an asymmetric bilinear group
along with n fixed generators u1, . . . , un in G1. These fixed generators are not stored anywhere;
they are computed as needed.

– FullNGroupGen(1λ, n)→ (G1,G2,GT , e, g1, g2, p, {(ui, ui,2)}i∈[n]) outputs an asymmetric bilinear
group along with n pairs of fixed generators

{
(ui, ui,2) ∈ G1 ×G2

}
i∈[n], where for all i ∈ [n] it

holds that dlogg1(ui) = dlogg2(ui,2). When invoked with the same inputs and random tape as
NGroupGen(·), it outputs the same n generators u1, . . . , un in G1. This algorithm is only used
in the security analysis (see also Remark 8).

In what follows, it is convenient to split the Setup procedure into two sub-procedures called
GlobalSetup and SystemSetup. The Global setup is a one-time setup that uses NGroupGen to output
global public parameters ppg which can be re-used across multiple signature systems. Algorithm
SystemSetup runs after the bilinear group has been generated and outputs additional parameters
that become an explicit part of the public parameters pp.

The multisignature scheme SIG2 is described in Figure 3. The proof that the scheme has verifi-
cation and tracing correctness is the same as the proof of correctness in the previous section.

Security. We now prove the unforgeability of our multisignature scheme SIG2. As mentioned above,
the proof is based on the hardness of the n-Bilinear Diffie-Helman assumption, defined below.

Definition 3. Let n = n(λ) be a parameter for some polynomial n(·). Let G := FullNGroupGen be
an extended asymmetric bilinear group generator that also outputs n pairs of fixed generators in both
groups, as defined above. Define the following security game Gn-bdh with respect to an adversary A:

1. Sample a bilinear group along with n pairs of fixed generators(
G1,G2,GT , e, g1, g2, p, {(ui, ui,2)}i∈[n]

)
←$ FullNGroupGen(1λ, n).

14

The Multisignature scheme SIG2 with local key generation, and no random oracles

Setup(1λ, n) :

1. GlobalSetup(1λ, n): Sample a bilinear group along with n fixed generators
(G1, G2, GT , e, g1, g2, {ui}i∈[n] ∈ G1, p)←$ NGroupGen(1λ, n).
Output ppg ← (G1,G2,GT , e, g1, g2, {ui}i∈[n], p).

2. SystemSetup(ppg): Sample v0, h0 ←$ G1. Output pp← (ppg, v0, h0).

// pp is constant size since the generators {ui}i∈[n] are not stored, they are computed as needed.

LocalKeyGen(i):

1. Sample αi ←$ Zp. Set ski ← αi.
2. For all j ∈ [n] \ {i}, compute pki,j ← uαi

j . Set pki ← (gαi
2 , {pki,j}j∈[n]\{i}).

KeyAgg(pk = (pk1, . . . , pkn)):

1. For each i ∈ [n], parse pki as (pki,0, {pki,j}j∈[n]\{i}).

2. For any i ∈ [n], j ∈ [n] \ {i}, if e(uj , pki,0) ̸= e(pki,j , g2), output ⊥.
3. Compute pkci ←

∏
j∈[n]\{i} pkj,i for all i ∈ [n].

4. Output (pkc← {pkci}i∈[n], vk←
∏

i∈[n] pki,0).

// observe that pkci is u
Σj∈[n]\{i}αj

i and vk is g
Σj∈[n]αj

2 .

Sign(ski, m ∈ Zp):

1. Parse ski as αi.
2. Sample ri,m ←$ Zp. Compute σi,0 ← g

ri,m
2 and σi,1 ← uαi

i · (v
m
0 h0)

ri,m .
3. Output σi = (σi,0, σi,1).

SigAgg(pkc, {σj}j∈J):

1. For each j ∈ J , parse σj as (σj,0, σj,1). Parse pkc as {pkci}i∈[n].

2. Compute σ0 ←
∏

j∈J σj,0.

3. For each j ∈ J , compute σ̂j,1 ← σj,1 · pkcj .
4. Output σ = (σ0, σ1 ←

∏
j∈J σ̂j,1, J).

// observe that σ̂j,1 is equal to u
Σi∈[n]αi

j · (vm0 h0)
rj,m .

Vf(vk,m, σ):

1. Parse σ as (σ0, σ1,J).
2. Output 1 if e(σ1, g2) = e(vm0 h0, σ0) · e(

∏
j∈J uj , vk).

Trace(m,σ):

1. Parse σ as (σ0, σ1,J) and output J ⊆ [n].

Fig. 3. The Multisignature scheme SIG2 with no random oracles

15

2. Send the group description and the generators u1, . . . , un in G1 to the adversary, that is, send
to A the tuple (

G1,G2,GT , e, g1, g2, p, {ui}i∈[n]
)
.

The adversary responds with an index j∗ ∈ [n]. This lets the adversary choose the generator in
the list u1, . . . , un ∈ G1 that it wants to attack.

3. Sample a, c←$ Zp and send to A the n-BDH challenge(
{uai , uci}i∈[n]\{j∗}, uj∗,2, ga1 , ga2 , gc1, gc2

)
. (4)

The adversary responds with a candidate BDH solution W ∈ GT .
4. Output 1 if W = e(uj∗ , g2)

ac and 0 otherwise.

We say that n-BDH is hard if, for all PPTalgorithms A, the following function is negligible in λ:

Advn-bdhG,n,A(λ) := Pr
[
Gn-bdh
G,n,A(λ) = 1

]
where the probability is taken over the random bits of FullNGroupGen, the random choice of exponents
a, c ∈ Zp, and the random bits used by A.

Our instantiation of H0 using the Boneh-Boyen algebraic hash H0(m) = vm0 h0 lets us prove
selective unforgeability (rather than existential unforgeability) of the resulting scheme. As such, we
modify the unforgeability game in Fig. 1 into a selective game. We modify Lines 1 to 3 as follows:

– the adversary first outputs n, the total number of parties (as in Fig. 1),
– the environment then runs the global setup ppg ←$ GlobalSetup(1λ, n) and send ppg to the

adversary,
– the adversary responds with an index i∗ ∈ [n] and the target message m∗ for which it will forge

a signature,
– the environment runs pp←$ SystemSetup(ppg) and sends pp to the adversary.

The rest of the game remains unchanged. We refer to this modified game as Gsa-uf
MS , for selective

unforgeability. The advantage function of an adversary A in this game is defined as

Advsa-ufMS,nmax,A(λ) := Pr
[
Gsa-uf

MS,nmax,A(λ) = 1
]
.

This advantage is parameterized by a polynomial nmax = nmax(λ) that denotes an upper bound on
the number of parties n that the adversary sends in Step 1 of the game. We say that a multisignature
scheme is selectively secure if this advantage is negligible in λ for all PPT adversaries A. The scheme
SIG2 can be extended to be existentially unforgeable by instantiating the hash function H0(m) using
the Waters algebraic hash [Wat05].

Theorem 2 below proves the selective security of SIG2 using n-Bilinear Diffie-Helman assump-
tion. The proof is presented in Appendix C.1.

Theorem 2. Let G be an extended asymmetric bilinear group generator. Then, for every adversary
A, there exists an adversary B with about the same runtime as A, such that,

Advsa-ufSIG2,nmax,A(λ) ≤ Advn-bdhG,nmax,B(λ)

where nmax = nmax(λ) is a bound on the number of parties that A outputs in Step 1 of the game
Gsa-uf

MS .

16

Remark 8 (on the n-BDH assumption). The n-BDH assumption is much simpler to state using a
symmetric pairing where G1 = G2 and g1 = g2. In particular, for a symmetric pairing, the n-BDH
challenge in (4) contains half as many terms, and the fixed generator pairs (ui, ui,2) ∈ G1 × G2

become a single fixed generator by setting ui,2 = ui. This is conceptually important because in the
asymmetric settings used in practice, it is not known how to efficiently generate these fixed pairs due
to the requirement that dlogg1(ui) = dlogg2(ui,2). When using a symmetric pairing we simply set
ui,2 = ui. Consequently, in symmetric setting the assumption is refutable in sense of [Nao03], while
in the asymmetric settings it is not refutable. Nevertheless, we chose to present our construction
in the asymmetric settings because that is how pairings are most commonly used in practice.

5 A Multisignature with a Short Verifier Key and an Efficient DKG

The multisignature schemes in the previous two sections have a short verification key, but require
a linear size combiner key pkc. In this section, we present a new multisignature scheme with a
short verification key and an empty pkc. The cost of eliminating the pkc is a trusted setup for key
generation, or alternatively, a simple distributed key generation protocol (DKG) to generate the
party’s secret keys. To simplify the presentation, we present our schemes using a trusted setup, but
the trusted setup can be converted into a simple DKG using standard techniques.

5.1 Multisignatures with Trusted Setup

We first define the syntax and security for a multisignature scheme with a trusted setup.

Syntax. A multisignature with a trusted setup is defined as in Section 2.1, but instead of the
LocalKeyGen(·) and KeyAgg(·) procedures, we have a single probabilistic algorithm KeyGen that
is executed by a trusted party as KeyGen(pp) → (pk, pkc, vk, sk1, . . . , skn). The algorithm takes as
input the public parameters (that encode the number of parties n), and outputs keys for all the
parties. The scheme must satisfy verification correctness and tracing correctness properties, similar
to those defined in Section 2.1. The only difference is that now, KeyGen is called to generate the
keys for all n parties (instead of running LocalKeyGen(i) for all parties i ∈ [n]).

Security. To define unforgeability we consider an adversary that can adaptively corrupt up to
n − 1 parties, and can query for signature shares from any party on any message. The scheme is
unforgeable if such an adversary cannot produce a valid signature on a message m on behalf of a
set J ⊆ [n] that includes some non-corrupt party, without requesting its signature on m.

Figure 4 defines the security game Guf
TMS that captures unforgeability for a multisignature

scheme with a trusted setup. The adversary first specifies the number of signers n, which is followed
by challenger running Setup and sampling keys for all n parties using the KeyGen procedure. The
adversary then interacts with the challenger using two types of queries: Secret-key queries and
signature queries. A secret-key query for signer i reveals to the adversary the secret key of signer i.
A signature query for (m, i) provides the adversary with an honestly-generated signature share on
m with respect to signer i’s secret key. Finally, the adversary should produce a valid forgery; that
is, a valid pair (m∗, σ∗) that traces to some party i ∈ [n] such that the adversary did not request
the secret key for i and did not ask for a signature on m∗ from i.

Definition 4. A multisignature scheme with trusted setup TMS is secure if for all PPTadversaries A
the following function is negligible:

AdvufTMS,A(λ) := Pr
[
Guf

TMS,A(λ) = 1
]
.

17

Game Guf
TMS with respect to an adversary A and security parameter λ

1 : (st, n)← A(λ)
2 : pp←$ Setup(1λ, n)

3 : Qsk ← ∅ ; ∀ m ∈M,Qsig(m)← ∅
4 : (pk, pkc, vk, sk1, . . . , skn)←$ KeyGen() // pp is an implicit argument to KeyGen

5 : (m∗, σ∗)←$AskO(·),SignO(·,·)(st, pp, pk, pkc, vk)

6 : if Vf(vk,m∗, σ∗) = 0 then

7 : return 0

8 : J ← Trace(m∗, σ∗) ⊆ [n]

9 : if J ̸⊆ Qsk ∪Qsig(m∗) then // the forgery traces to a set containing an honest party

10 : return 1

Oracle skO(i)

1 : Qsk ← Qsk ∪ {i}
2 : return ski

Oracle SignO(m, i)

1 : σi ← Sign(ski,m)

2 : Qsig(m)← Qsig(m) ∪ {i}
3 : return σi

Fig. 4. The security game Guf
TMS for a Multisignature scheme with trusted setup TMS = (Setup,KeyGen, Sign, SigAgg,

Vf,Trace).

5.2 The SIG3 Multisignature

We next present our multisignature scheme with trusted setup and a constant size vk. The scheme
is described in Figure 5. The scheme uses two hash functions H0 : M → G1, where M is the
message space, and H1 : [n] → G1, where n is an upper bound on the number of signers. We will
model these hash functions as random oracles in the proof of security.

Correctness. An honestly generated signature (σ0, σ1,J) verifies correctly because

e(σ1, g2) = e
(∏
j∈J

(H1(j)
α · H0(m)rj) , g2

)

= e

(∏
j∈J

H1(j)
)α
· H0(m)Σj∈J rj , g2

 = e
(∏
j∈J

H1(j), g
α
2

)
· e
(
H0(m), g

Σj∈J rj
2

)
= e
(∏
j∈J

H1(j), h
)
· e(H0(m), σ0).

Security. Theorem 3 below reduces the security of SIG3 to the hardness of the co-Bilinear Diffie-
Hellman problem from Definition 2. The proof models H0 and H1 as random oracles, and is provided
in Appendix C.2.

Theorem 3. Let G be an asymmetric bilinear group generator. Then, for every adversary A there
exists another adversary B with roughly the same runtime as A such that

AdvufSIG3,A(λ) ≤ 2e · nmax · (qS + 1) · Advco-bdhG,B (λ)

18

The Multisignature SIG3 with a Trusted setup

Setup(1λ, n):

1. Sample a bilinear group (G1,G2,GT , e, g1, g2, p)←$ GroupGen(1λ).
2. Output pp← (n,G1,G2,GT , e, g1, g2, p).
3. The system uses two hash functions: H0 :M→ G1 and H1 : [n]→ G1.

KeyGen(): // implemented as a distributed key generation protocol

1. Sample α←$ Zp. Set h← gα2 and ski ← H1(i)
α for all i ∈ [n].

2. Output
(
pk = h, pkc = ⊥, vk = h, (sk1, . . . , skn)

)
.

Sign(ski,m):

1. Sample ri ←$ Zp.
2. Compute σi,0 ← gri2 ∈ G2 and σi,1 ← ski · H0(m)ri ∈ G1.
3. Output σi = (σi,0, σi,1).

SigAgg(pkc, (σi1 , . . . , σi|J |)):

1. For j ∈ J : Parse σj as (σj,0, σj,1).
2. Compute σ0 ←

∏
j∈J σj,0 ∈ G2 and σ1 ←

∏
j∈J σj,1 ∈ G1.

3. Output σ = (σ0, σ1,J).

// observe that σ1 is equal to
(∏

j∈J H1(j)
)α
· H0(m)Σj∈J rj,m .

Vf(vk,m, σ):

1. Parse vk as (h) and σ as (σ0, σ1,J).
2. Output 1 if e(σ1, g2) = e(H0(m), σ0) · e(

∏
j∈J H1(j), h).

Trace(m,σ):

1. Parse σ as (σ0, σ1,J) and output J ⊆ [n].

Fig. 5. The Multisignature scheme SIG3 with constant size public keys and signatures and a trusted setup

where nmax = nmax(λ) is a bound on the number of signers, qH = qH(λ), qS = qS(λ) are a bound
on the number of queries issued by A to H0 and SignO respectively, and e ≈ 2.71. We assume that
2(qS + qH) < p, where p = p(λ) is the size of the groups output by G.

Remark 9 (Proactive Refresh). [BPR22] presented a generic construction for an accountable thresh-
old signature scheme with proactive refresh, called PRATS, that uses two building blocks: a thresh-
old signature scheme with proactive refresh, and an accountable threshold scheme. Since SIG3 has
a short public key and an efficient DKG protocol, we can instantiate PRATS with SIG3 to get a
concretely efficient threshold signature scheme that is both accountable and proactively refresh-
able. This is the first such pairing-based scheme that satisfies the strongest security properties
from [BPR22]. In Appendix B we further optimize this construction.

Distributed Key Generation. Although we described the multisignature scheme SIG3 using
a trusted setup, the public and secret keys of SIG3 can be generated via a simple distributed
key generation protocol, along the lines discussed in other works, such as [GJKR99,GJKR07,CS04,

19

Gro21] to name a few. As a simple illustration, when the parties are semi-honest, and are connected
to each other via a private authenticated channel, the following simple protocol is sufficient:

1. Each signer i ∈ [n] samples a uniformly random element αi ←$ Zp and computes Yi,i ← H1(i)
αi .

2. For each j ∈ [n] \ {i}, signer i sends Yi,j ← H1(j)
αi to signer j. It also sends Xi ← gαi

2 to all
other signers in [n] \ {i}.

3. Upon receiving Y1,i, . . . , Yn,i and X1, . . . , Xn from all other signers, each signer sets the public
key to be pk←

∏
j∈[n]Xj , and its secret key as ski ←

∏
j∈[n] Yj,i.

Observe that if we write α := Σj∈[n]αj , then pk = gα2 , and ski = H1(i)
α, as required. For a DKG

among malicious parties one would need to use one of the protocols cited above.

6 A lattice based Multisignature with short public keys

In this section, we extend our techniques from Section 5.2 to get a lattice-based multisignature with
a short public key and a two-round interactive signing protocol. We start with preliminaries.

6.1 Preliminaries

Polynomial Rings. As standard, we identify Zq for a prime q with the set (−q/2, . . . , q/2], and
we define the absolute value of an element x ∈ Zq as |x| = {min |y| : y ∈ Z, y = x (mod q)}. For
N, q ∈ N, we define R = Z[X]/f(X) and Rq = Zq[X]/f(X), where q is a prime modulus and N is
a power of two defining the degree of f(X). Specifically, f(X) = XN + 1 is the 2Nth cyclotomic
polynomial. We define the norm of elements in these rings to be the norm of their coefficient vector
in ZN , which is also called the coefficient embedding.

Following [DOTT21], we define a key set Sη ⊆ R parameterized by η ≥ 0 consisting of small
polynomials:

Sη = {x ∈ R : ||x||∞ ≤ η}
We define a challenge set C ⊆ R parameterized by κ, consisting of small and sparse polynomials:

C = {x ∈ R : ||x||1 = κ ∧ ||x||∞ = 1}

The discrete Gaussian distribution over Rm is defined as follows.

Definition 5. For x ∈ Rm, L ⊆ Rm, let ρv,s(x) = exp(−π||x−v||22/s2) be a Gaussian function of
parameters v ∈ Rm and s ∈ R. The discrete Gaussian distribution Dm

L,v,s centered at v is

Dm
L,v,s(x) := ρv,s(x)/ρv,s(L)

where ρv,s(L) = Σy∈Lρv,s(y).

We omit the subscript v if v = 0, and omit L if L = Rm. We assume s exceeds the smoothing
parameter (as defined in [DOTT21]), and hence Dm

s behaves like a continuous Gaussian with
standard deviation σ = s/

√
2π.

We now define ring lattices, namely discrete subgroups of Rm.

Definition 6. For a prime q, A ∈ Rk×ℓ
q and u ∈ Rk

q , define:

Λ⊥q (A) = {e ∈ Rℓ : Ae = 0 mod q}

Λu
q (A) = {e ∈ Rℓ : Ae = u mod q}

20

Lattice-based Assumptions. We define two standard lattice problems over rings: Module Short
Integer Solution (MSIS) and Module Learning With Errors (MLWE).

Definition 7 (MSISq,k,ℓ,β). For prime q = q(λ), k = k(λ), ℓ = ℓ(λ) ∈ N, β ∈ R, the MSISq,k,ℓ,β
problem is said to be hard if for all PPT adversaries, the following function is negligible in λ:

AdvMSISq,k,ℓ,β ,A(λ) = Pr

[
[A|I] · x = 0 ∧ ||x||2 ≤ β :

A←$ Rk×ℓ
q

x←$A(A)

]
Definition 8 (MLWEq,k,ℓ,η). For prime q = q(λ), k = k(λ), ℓ = ℓ(λ) ∈ N, η ∈ R, the MLWEq,k,ℓ,η

problem is said to be hard if for all PPT adversaries A, the following function is negligible in λ:

AdvMLWEq,k,ℓ,η ,A(λ) = |Pr[A(A, t) = 1]− Pr[A(A, [A|I] · s) = 1]|

where A←$ Rk×ℓ
q , s←$ Sℓ

η × Sk
η , t←$ Rk

q .

Note that, in the MLWE definition, the latter k elements of s correspond to the error term of
MLWE, sampled from Sη.

Lattice-based Trapdoors. Past works [ABB10, GM18, GPV08] have shown how to sample an
essentially uniform matrix A ∈ Rk×ℓ

q along with a trapdoor TA. This trapdoor can be used to
sample x ∈ Λu

q (A) drawn from a distribution statistically close to the Gaussian distribution over the

lattice, i.e. Dℓ
Λu
q (A),σ for σ more than a certain threshold. We now formally define these procedures:

Lemma 1. Let q be a prime, and k, ℓ ∈ N. Then,

– There is a probabilistic polynomial time algorithm TrapGen(q, k, ℓ) that outputs a pair (A ∈
Rk×ℓ

q , TA) such that A is statistically close to a uniform matrix in Rk×ℓ
q , and TA is a trapdoor

for A, which can be used in the following procedure.
– There is a probabilistic polynomial time algorithm SampleGaussian(A,B, TA,u, s) that takes as

input a matrix and its trapdoor (A ∈ Rk×ℓ
q , TA) along with u ∈ Rk, s ∈ R,B ∈ Rk×m and

outputs x ∈ Λu
q (A|B) sampled from a distribution statistically close to Dℓ+m

Λu
q (A|B),s.

– For any u ∈ Rk, A ∈ Rk×ℓ
q ,B ∈ Rk×m, s ∈ R,

Pr[x ∼ Dℓ+m
Λu
q (A|B),s : ||x|| > s

√
(ℓ+m)] < negl(k)

Rejection Sampling.We now state the rejection sampling algorithm which is used as a subroutine
in our signature scheme.

Lemma 2. (Theorem 4.6 of [Lyu12]) For m ∈ N, R = Z[X]/f(X) with N being the degree of
f(X), let V be a subset of Rm, in which all elements have norm less than T . Let s ∈ R such that
s = ω(T

√
log(m)), and h : V → R be a probability distribution. Then, for constants M,α, t where

M = et/α+1/(2α2), s = αT
√
2π and t = ω(

√
log(mN)), we have that the distribution of the following

algorithm A:

1. Sample v ←$ h , z ←$ Dm
v,s.

2. Output (z,v) with probability p = min
(
1, Dm

s (z)
MDm

v,s(z)

)
(and output ⊥ with probability 1− p).

is within statistical distance 2−ω(log(m))

M of the distribution of the following algorithm F :

21

1. Sample v ←$ h , z ←$ Dm
s .

2. Output (z,v) with probability 1/M (and output ⊥ with probability 1− 1/M).

Moreover, the probability that A does not output ⊥ is at least 1−2−ω(log(m))

M .

Trapdoor Commitment Scheme. A trapdoor commitment scheme is a tuple of PPT algorithms
Com = (Setup,CGen,Commit,Open,TCGen,TCommit,Eqv), where:

– Setup(1λ) → cpp outputs public parameters containing Sck, Sm, Sr, Scom, Std which define
the space of commitment keys, messages, randomness, the commitments and the trapdoors
respectively. It also outputs D(Sr), a distribution over Sr.

– CGen(cpp)→ ck outputs a commitment key ck ∈ Sck.

– Commit(ck,m; r)→ com, takes a commitment key ck ∈ Sck, message m ∈ Sm and randomness
r ∈ Sr as input and outputs a commitment com to m.

– Open(ck, com,m, r)→ {0, 1} outputs 1 if com is a valid commitment to m with opening r, with
respect to ck.

– TCGen(cpp) → (tck, td) is the trapdoor key generation algorithm, and outputs a commitment
key tck ∈ Sck along with a trapdoor td ∈ Std.

– TCommit(tck, td)→ com, the trapdoor commitment algorithm outputs a commitment com.

– Eqv(tck, td, com,m)→ r is the equivocation algorithm that outputs r ∈ Sr.

A secure trapdoor commitment scheme must satisfy correctness, hiding, binding and secure
trapdoor, which we define below:

Correctness. A commitment scheme Com is correct if, for all messages m ∈ Sm,

Pr

[
Open(ck, com,m, r) = 1 :

cpp←$ Setup(1λ); ck ←$ CGen(cpp)
r ←$ D(Sr); com← Commit(ck,m; r)

]
= 1

Hiding. A commitment scheme Com is perfectly (or computationally) hiding if the following prob-
ability is negligible in λ for a probabilistic (or PPT) adversary A = (A1,A2):

ϵh :=

∣∣∣∣∣∣∣∣Pr
b = b′ :

cpp←$ Setup(1λ); ck ←$ CGen(cpp)
(m0,m1)←$A1(cpp, ck)

b←$ {0, 1}; com←$ Commit(ck,mb)
b′ ←$A2(com)

− 1

2

∣∣∣∣∣∣∣∣
Binding. A commitment scheme Com is computationally binding if the following probability is
negligible in λ for any probabilistic polynomial time algorithm A:

ϵbind := Pr

 m ̸= m′

Open(ck, com,m, r) = 1
Open(ck, com,m′, r′) = 1

:
cpp←$ Setup(1λ)
ck ←$ CGen(cpp)

(com,m, r,m′, r′)←$A(cpp, ck)

Secure Trapdoor. Com has a secure trapdoor if for any message m ∈ Sm, the statistical dis-
tance ϵtd between (ck,m, r, com) and (tck,m, r′, com′) is negligible in λ where cpp ←$ Setup(1λ),
ck ←$ CGen(cpp), r ←$ D(Sr), com ← Commit(ck,m, r) and (tck, td) ←$ TCGen(cpp), com′ ←$

TCommit(tck, td) and r′ ← Eqv(tck, td, com′,m).

22

Our protocol also requires that the commitment scheme be additively homomorphic and uniform
key. We now define these properties:

Uniform Key. A commitment scheme Com is uniform key if the output of CGen(cpp) follows the
uniform distribution over Sck.

Additively Homomorphic. A commitment scheme Com is additively homomorphic if for all m,m′ ∈
Sm,

Pr

Open(ck, com+ com′,m+m′, r + r′) = 1 :

cpp←$ Setup(1λ)
ck ←$ CGen(cpp)
r, r′ ←$ D(Sr)

com← Commit(ck,m, r)
com′ ← Commit(ck,m′, r′)

 = 1

Any lattice-based trapdoor commitment scheme that satisfies all of the above properties can be
used to instantiate our scheme. The scheme in Fig.15 in [DOTT21] is one such example.

6.2 A lattice based Multisignature with short public keys

We now extend our techniques from Sections 5 to build a lattice-based Multisignature scheme
which has a short public key. Our starting point is a two-round multisignature scheme MS2
from [DOTT21]. This scheme uses Fiat Shamir with aborts and rejection sampling. It relies on
the module LWE and SIS assumptions, and an additively homomorphic trapdoor commitment
scheme Com which is statistically hiding and computationally binding. The message space is de-
fined asM← {0, 1}∗. The public key in [DOTT21] includes a uniformly random matrix A ∈ Rk×ℓ

q ,

n vectors ti ∈ Rk such that [A|Ik]·ski = ti for all i ∈ [n], and two hash functions Hchal : {0, 1}∗ → C
and Hck : {0, 1}∗ → Sck, where Sck is the space of commitment keys for the commitment scheme
Com. The main modification we make is that, for each party i, the secret key is now a short vector
si, such that Asi = H1(i) where H1 : [n]→ Rk

q is a hash function. The public key now only needs
to contain the matrix A. We describe the full scheme in Figure 6.

Correctness. Observe that for any honestly generated signature (z, r, ĉ,J), we have:

Āz −Σj∈J (dj · H1(j)) = Ā · (Σj∈J (dj · skj + yj))−Σj∈J (dj · H1(j))

= Σj∈J
(
dj · Ā · skj + Ā · yj − dj · H1(j)

)
= Σj∈J

(
dj · H1(j) + Ā · yj − dj · H1(j)

)
= Σj∈J Ā · yj

= Σj∈Jwj

The above equations follow from the fact that Ā · skj = H1(j) for all parties. Next, observe that
ĉ = Σj∈J cj , where cj is a commitment to wj with randomness rj . Hence, by the homomorphism
of the commitment scheme, we have that (w = Σj∈Jwj ; r = Σj∈J rj) is a valid opening to the
commitment ĉ. Lastly, observe that z is the sum of |J | ≤ n Gaussian variables. Hence, its norm
would only be

√
n times larger than the norm of each zi vector. Since we set B to be

√
n times the

tail bound on ||zi||2 ≤ γσ
√
N(ℓ+ k) (as stated in Lemma 2 of [DOTT21], with σ = s/

√
2π), the

Vf algorithm will pass for an honestly generated signature.

23

The lattice-based Multisignature scheme LSIG3

Setup(1λ, n):

1. Run cpp←$ Com.Setup(1λ). Output pp← (n, cpp).
2. The system uses three hash functions, Hchal : {0, 1}∗ → C, H1 : [n]→ Rk

q , and Hck : {0, 1}∗ → Sck.

KeyGen():

1. Sample (A, TA)←$ TrapGen(k, ℓ). Define Ā← [A|Ik].
2. For all i ∈ [n], set ski ← SampleGaussian(A, Ik, TA,H1(i), η̂).
3. Output (pk = Ā, pkc = Ā, vk = Ā, (sk1, . . . , skn)).

Sign(ski, pk,J ,m):

– First Round:
1. Parse pk as Ā. Sample yi ←$ Dk+ℓ

s , set wi ← Āyi. Sample ri ←$ D(Sr).
2. Compute ck ← Hck(m, pk), ci ← Com.Commit(ck,wi; ri)
3. Send msgi,1 ← ci to all parties in J .

– Second Round:
1. Upon receiving cj from all j ∈ J \ {i}, set c← Σj∈J cj .
2. Derive a challenge di ← Hchal(m, pk,J , c, i).
3. Compute signature share zi ← di · ski + yi.
4. Run Rejection sampling on (zi, di ski). Specifically, output si ← (m,zi, ri, c, {cj}j∈J\{i}) with proba-

bility p = min

(
1,

Dk+ℓ
s (zi)

M·Dk+ℓ
di ski,s

(zi)

)
and output ⊥ with probability 1− p.

SigAgg(pkc, (si1 , . . . , si|J |)):

1. For each j ∈ [|J |], parse sij as (mij ,zij , rij , ĉij , {ĉij ,k}k∈J\{ij}). Let ĉ← ĉi1 , m← mi1 . If for any j ∈ [|J |],
ĉij ̸= ĉ or mij ̸= m, then output ⊥.

2. Parse pkc as Ā = pk. Set ck ← Hck(m, pk).

3. For each j ∈ J , compute wj ← Āzj − Hchal(m, pk,J , ĉ, j) · H1(j).

4. If, for any j, k ∈ J , Com.Open(ck, ĉk,j ,wj , rj) ̸= 1, output ⊥.
5. Compute z ← Σj∈J zj and r ← Σj∈J rj . Output σ ← (z, r, ĉ,J).

// observe that z = Σi∈J di · ski +Σi∈J yi where Σi∈J di · ski is the “collective” secret key of subset J .

Vf(vk,m, σ):

1. Parse vk as Ā = pk and σ as (z, r, ĉ,J). Compute ck ← Hck(m, pk).
2. For each j ∈ J , compute dj ← Hchal(m, pk,J , ĉ, j).
3. Compute w ← Āz −Σj∈J dj · H1(j).
4. Output 1 if ||z||2 ≤ B and Com.Open(ck, ĉ,w, r) = 1.

Trace(m,σ):

1. Parse σ as (z, r, ĉ,J) and output J ⊆ [n].

Fig. 6. The lattice-based Multisignature LSIG3 with Trusted Setup

24

Security. Theorem 4 below proves the unforgeability of LSIG3, with respect to the security game
defined in Fig. 7. It is based on the hardness of MSIS and MLWE assumptions (as defined in
Definitions 7 and 8) and the security of the commitment scheme Com. The proof follows the proof
of Theorem 2 in [DOTT21], and models the hash functions as random oracles. It is provided in
Appendix C.3. The parameters of our scheme are the same as those in Table 2 of [DOTT21], with
η̂ = η.

Theorem 4. For every PPT adversary A, there exist adversaries B1, B2 such that,

AdvufLSIG3,A(λ) ≤ e · n · (qH + qS + 1) ·

(qH + qS)ϵtd +

2qSe
−t2/2

M +

(n− 1) · AdvMLWEq,k,ℓ,η ,B1(λ) +
qH+qS+1
|C| +√

(qH + qS + 1) · (ϵbind + AdvMSISq,k,ℓ+1,β ,B2(λ)

where n = n(λ), qS = qS(λ) and qH = qH(λ) are an upper bound on the number of signers, the
number of signing and random oracle queries by A respectively, and e ≈ 2.71. Also, ϵtd = ϵtd(λ)
and ϵbind = ϵbind(λ) are defined with respect to Com, as in Section 6.1. t,M are parameters of
the rejection sampling algorithm as defined in Lemma 2, C is the challenge space as defined in
Section 6.1, and q, k, ℓ, β, η are parameters of the scheme as described in Table 2 of [DOTT21].

On aborts and Signature size. The protocol only outputs a signature after two rounds if the
rejection sampling step goes through for all the signers, which happens with probability 1/M |J | ≥
1/Mn, where M is a parameter of the rejection sampling algorithm (discussed in Lemma 2). As
explained in [DOTT21], for Mn to be constant, lets say 3, we would need to scale α ≥ 11n and
hence σ now needs to be ≥ 11nT . This increases the norm bound B on the aggregate signature,
which is proportional to

√
n · σ, and hence grows with n3/2. The signature size would increase by

a factor of roughly O(log(n)). We leave further optimizations and concrete parameter analysis as
future work.

Round Complexity. The probability that we get a valid signature at the end of two rounds is
1/M |J | ≥ 1/Mn. The parameters can be adjusted so that this probability is constant, lets say at
least 1/3, which would mean that the expected number of rounds to get a signature is 2Mn = 6.
Alternatively, as also suggested in [DOTT21], all the parties could run multiple executions of the
protocol in parallel, then, the probability that at least one execution outputs a signature would be
overwhelmingly high.

Semi-Honest Distributed Key Generation. The public and secret keys of LSIG3 can be gener-
ated via a distributed protocol using techniques given in [BKP13]. Specifically, both the trapdoor
generation and Gaussian sampling algorithms can be executed as a distributed protocol among all
the parties.

Proactive Refresh. Similar to our techniques in Appendix B, we can add proactive refresh to
our lattice-based multisignature LSIG3 by setting the secret key of party i in epoch e to be a short
vector such that A · skei = H1(i, e). The Update protocol can use techniques given in [BKP13] to
run the SampleGaussian protocol in a distributed fashion to refresh the secret keys for each epoch.

On requiring a Trapdoor Commitment Scheme. Our technique can also be used to extend
the 3-round protocol in [DOTT21]. The resulting scheme will be a multisignature with short public
keys, and will only require an additively homomorphic commitment scheme. Additionally, we believe

25

that the 2-round scheme given in [BTT22] can also be extended using our technique, which will
result in a 2-round multisignature with a short public key without requiring a trapdoor commitment
scheme.

7 Conclusion and Future Directions

We presented a number of multisignature schemes with a short verification key. Some of our schemes
support local key generation for the signers while others require a distributed key generation pro-
tocol. Some are set in the plain model while others are set in the random oracle model. Our last
scheme is based on lattices, while the first three are pairing based.

An interesting direction for future work is to extend the ideas from the schemes SIG1 and
SIG2 to the lattice setting, to get multisignatures with short public keys and local key generation.
Constructing such a scheme that requires only a single round of interaction to generate a signature
(as opposed to two) is an important open problem.

Acknowledgments. This work was funded by NSF, DARPA, the Simons Foundation, and NTT
Research. Opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of DARPA.

References

ABB10. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In EURO-
CRYPT 2010, LNCS 6110, pages 553–572, French Riviera, May 30 – June 3, 2010. Springer, Heidelberg,
Germany.

BB04. D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption without random oracles.
In EUROCRYPT 2004, LNCS 3027, pages 223–238, Interlaken, Switzerland, May 2–6, 2004. Springer,
Heidelberg, Germany.

BB11. D. Boneh and X. Boyen. Efficient selective identity-based encryption without random oracles. Journal of
Cryptology, 24(4):659–693, October 2011.

BCG+23. F. Baldimtsi, K. K. Chalkias, F. Garillot, J. Lindstrom, B. Riva, A. Roy, A. Sonnino, P. Waiwitlikhit, and
J. Wang. Subset-optimized bls multi-signature with key aggregation. Cryptology ePrint Archive, Paper
2023/498, 2023. https://eprint.iacr.org/2023/498.

BDN18. D. Boneh, M. Drijvers, and G. Neven. Compact multi-signatures for smaller blockchains. In ASI-
ACRYPT 2018, Part II, LNCS 11273, pages 435–464, Brisbane, Queensland, Australia, December 2–6,
2018. Springer, Heidelberg, Germany.

BGJ+23. L. Baird, S. Garg, A. Jain, P. Mukherjee, R. Sinha, M. Wang, and Y. Zhang. Threshold signatures in the
multiverse. In 2023 IEEE Symposium on Security and Privacy (SP), pages 1454–1470, 2023.

BGLS03. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from
bilinear maps. In EUROCRYPT 2003, LNCS 2656, pages 416–432, Warsaw, Poland, May 4–8, 2003.
Springer, Heidelberg, Germany.

BGR98. M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular exponentiation and digital
signatures. In EUROCRYPT’98, LNCS 1403, pages 236–250, Espoo, Finland, May 31 – June 4, 1998.
Springer, Heidelberg, Germany.

BGR12. K. Brogle, S. Goldberg, and L. Reyzin. Sequential aggregate signatures with lazy verification from trapdoor
permutations - (extended abstract). In ASIACRYPT 2012, LNCS 7658, pages 644–662, Beijing, China,
December 2–6, 2012. Springer, Heidelberg, Germany.

BKP13. R. Bendlin, S. Krehbiel, and C. Peikert. How to share a lattice trapdoor: Threshold protocols for signatures
and (H)IBE. In ACNS 13, LNCS 7954, pages 218–236, Banff, AB, Canada, June 25–28, 2013. Springer,
Heidelberg, Germany.

BL22. R. Bacho and J. Loss. On the adaptive security of the threshold BLS signature scheme. In ACM CCS
2022, pages 193–207, Los Angeles, CA, USA, November 7–11, 2022. ACM Press.

26

https://eprint.iacr.org/2023/498

BLS01. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In ASIACRYPT 2001,
LNCS 2248, pages 514–532, Gold Coast, Australia, December 9–13, 2001. Springer, Heidelberg, Germany.

BN06. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma.
In ACM CCS 2006, pages 390–399, Alexandria, Virginia, USA, October 30 – November 3, 2006. ACM
Press.

BNN07. M. Bellare, C. Namprempre, and G. Neven. Unrestricted aggregate signatures. In ICALP 2007, LNCS
4596, pages 411–422, Wroclaw, Poland, July 9–13, 2007. Springer, Heidelberg, Germany.

Bol03. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-
group signature scheme. In PKC 2003, LNCS 2567, pages 31–46, Miami, FL, USA, January 6–8, 2003.
Springer, Heidelberg, Germany.

BPR22. D. Boneh, A. Partap, and L. Rotem. Proactive refresh for accountable threshold signatures. Cryptology
ePrint Archive, Paper 2022/1656, 2022. https://eprint.iacr.org/2022/1656.

BS23. D. Boneh and V. Shoup. A graduate course in applied cryptography (version 0.6). 2023. cryptobook.us.

BTT22. C. Boschini, A. Takahashi, and M. Tibouchi. MuSig-L: Lattice-based multi-signature with single-round
online phase. In CRYPTO 2022, Part II, LNCS 13508, pages 276–305, Santa Barbara, CA, USA, Au-
gust 15–18, 2022. Springer, Heidelberg, Germany.

CKM23. E. Crites, C. Komlo, and M. Maller. Fully adaptive schnorr threshold signatures. Cryptology ePrint
Archive, Paper 2023/445, 2023. https://eprint.iacr.org/2023/445.

CS04. J. F. Canny and S. Sorkin. Practical large-scale distributed key generation. In EUROCRYPT 2004, LNCS
3027, pages 138–152, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

DCX+23. S. Das, P. Camacho, Z. Xiang, J. Nieto, B. Bunz, and L. Ren. Threshold signatures from inner product
argument: Succinct, weighted, and multi-threshold. Cryptology ePrint Archive, Paper 2023/598, 2023.
https://eprint.iacr.org/2023/598.

DFKP16. A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno. Cinderella: Turning shabby X.509 cer-
tificates into elegant anonymous credentials with the magic of verifiable computation. In 2016 IEEE
Symposium on Security and Privacy, pages 235–254, San Jose, CA, USA, May 22–26, 2016. IEEE Com-
puter Society Press.

DGKR18. B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-secure, semi-synchronous
proof-of-stake blockchain. In EUROCRYPT 2018, Part II, LNCS 10821, pages 66–98, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany.

DOTT21. I. Damg̊ard, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-out-of-n and multi-signatures and
trapdoor commitment from lattices. In PKC 2021, Part I, LNCS 12710, pages 99–130, Virtual Event,
May 10–13, 2021. Springer, Heidelberg, Germany.

DR23. S. Das and L. Ren. Adaptively secure bls threshold signatures from ddh and co-cdh. Cryptology ePrint
Archive, Paper 2023/1553, 2023. https://eprint.iacr.org/2023/1553.

EB14. R. El Bansarkhani and J. Buchmann. Towards lattice based aggregate signatures. In AFRICACRYPT
14, LNCS 8469, pages 336–355, Marrakesh, Morocco, May 28–30, 2014. Springer, Heidelberg, Germany.

FH20. M. Fukumitsu and S. Hasegawa. A lattice-based provably secure multisignature scheme in quantum
random oracle model. In ProvSec 2020, LNCS 12505, pages 45–64, Singapore, November 29 – December 1,
2020. Springer, Heidelberg, Germany.

FLS12. M. Fischlin, A. Lehmann, and D. Schröder. History-free sequential aggregate signatures. In SCN 12,
LNCS 7485, pages 113–130, Amalfi, Italy, September 5–7, 2012. Springer, Heidelberg, Germany.

GHM+17. Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzantine agreements for
cryptocurrencies. Cryptology ePrint Archive, Report 2017/454, 2017. https://eprint.iacr.org/2017/

454.

GJKR99. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for discrete-log
based cryptosystems. In EUROCRYPT’99, LNCS 1592, pages 295–310, Prague, Czech Republic, May 2–6,
1999. Springer, Heidelberg, Germany.

GJKR07. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for discrete-log
based cryptosystems. Journal of Cryptology, 20(1):51–83, January 2007.

GJM+23. S. Garg, A. Jain, P. Mukherjee, R. Sinha, M. Wang, and Y. Zhang. hints: Threshold signatures with silent
setup. Cryptology ePrint Archive, Paper 2023/567, 2023. https://eprint.iacr.org/2023/567.

GM18. N. Genise and D. Micciancio. Faster Gaussian sampling for trapdoor lattices with arbitrary modulus.
In EUROCRYPT 2018, Part I, LNCS 10820, pages 174–203, Tel Aviv, Israel, April 29 – May 3, 2018.
Springer, Heidelberg, Germany.

27

https://eprint.iacr.org/2022/1656
cryptobook.us
https://eprint.iacr.org/2023/445
https://eprint.iacr.org/2023/598
https://eprint.iacr.org/2023/1553
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2023/567

GOR18. C. Gentry, A. O’Neill, and L. Reyzin. A unified framework for trapdoor-permutation-based sequential
aggregate signatures. In PKC 2018, Part II, LNCS 10770, pages 34–57, Rio de Janeiro, Brazil, March 25–
29, 2018. Springer, Heidelberg, Germany.

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic con-
structions. In 40th ACM STOC, pages 197–206, Victoria, BC, Canada, May 17–20, 2008. ACM Press.

GR06. C. Gentry and Z. Ramzan. Identity-based aggregate signatures. In PKC 2006, LNCS 3958, pages 257–273,
New York, NY, USA, April 24–26, 2006. Springer, Heidelberg, Germany.

Gro16. J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT 2016, Part II, LNCS
9666, pages 305–326, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

Gro21. J. Groth. Non-interactive distributed key generation and key resharing. Cryptology ePrint Archive,
Report 2021/339, 2021. https://eprint.iacr.org/2021/339.

HK08. D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. In CRYPTO 2008, LNCS
5157, pages 21–38, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany.

HK12. D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. Journal of Cryptology,
25(3):484–527, July 2012.

LMRS04. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate signatures from trapdoor
permutations. In EUROCRYPT 2004, LNCS 3027, pages 74–90, Interlaken, Switzerland, May 2–6, 2004.
Springer, Heidelberg, Germany.

LOS+06. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. Sequential aggregate signatures and mul-
tisignatures without random oracles. In EUROCRYPT 2006, LNCS 4004, pages 465–485, St. Petersburg,
Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany.

Lyu12. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT 2012, LNCS 7237, pages
738–755, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

MOR01. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures: Extended abstract. In ACM
CCS 2001, pages 245–254, Philadelphia, PA, USA, November 5–8, 2001. ACM Press.

Nao03. M. Naor. On cryptographic assumptions and challenges (invited talk). In CRYPTO 2003, LNCS 2729,
pages 96–109, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

NRS21. J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple two-round Schnorr multi-signatures. In CRYPTO 2021,
Part I, LNCS 12825, pages 189–221, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

RY07. T. Ristenpart and S. Yilek. The power of proofs-of-possession: Securing multiparty signatures against
rogue-key attacks. In EUROCRYPT 2007, LNCS 4515, pages 228–245, Barcelona, Spain, May 20–24,
2007. Springer, Heidelberg, Germany.

Smi22. C. Smith. Ethereum proof of stake, 2022. link.
Wat05. B. R. Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT 2005, LNCS

3494, pages 114–127, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany.

A Interactive Multisignatures

In this section, we present our definitions for interactive multisignature schemes. We focus on
schemes in which the signing protocol is made up of two rounds of communication among the
signers. These definitions capture our lattice based multisignature from Section 6.

The syntax for interactive schemes closely follows that of non-interactive schemes, with the
following exception. In interactive schemes, the signature algorithm Sign is now an interactive
protocol, made up of two sub-algorithms (Sign1,Sign2), where:

– Sign1 is a randomized algorithm which takes as input a secret key ski, a message m, the public
key pk and a subset J ⊆ [n] of indices. It outputs a state sti,1 and a first message msgi,1 to be
sent in round 1 of the protocol to all signers in J \ {i}.

– Sign2 is a deterministic algorithm which takes as input a state sti,1 and incoming messages
{msgj,1}j∈J\{i}. It outputs a signature share si.

The syntax above requires knowledge of m and J at the beginning of the protocol (these are given
as inputs to Sign1). This captures the standard scenario in which a subset J of signers initiates

28

https://eprint.iacr.org/2021/339
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/

the signing protocol in a coordinated manner in order to sign a particular message m. Defining the
syntax in this manner also has the advantage of being general enough to capture protocols that
require knowledge of m and J already in the onset of the protocol.

The correctness definitions for an interactive multisignature scheme are naturally extended
from the non-interactive case, by replacing the non-interactive signing algorithm with an honest
execution of the interactive signing protocol.

Security. Unforgeability of two-round multisignatures are defined via a natural generalization of
the analogous definitions for non-interactive schemes (presented in Figure 4). Importantly, the
signing oracle is now replaced with two separate oracles, one for each of the sub-routines making
up the signing protocol. The adversary may query any of these oracles on inputs and ordering of its
choice. In particular, this allows the adversary to interact with honest signers in many concurrent
sessions of the signing protocol, arbitrarily interleaving between them.

For a two-round multisignatures scheme TMS = (Setup,KeyGen, Sign = (Sign1,Sign2),SigAgg,
Vf,Trace), the security game capturing its unforgeability is defined in Figure 7. The advantage is
defined as in Definition 4.

Game Guf
TMS with respect to an adversary A and security parameter λ

1 : (st, n)← A(λ)

2 : pp←$ Setup(1λ, n)

3 : Qsk ← ∅ ; ∀ m ∈M,Qsig(m)← ∅
4 : (pk, pkc, vk, sk1, . . . , skn)←$ KeyGen()

5 : for i = {1, . . . , n} do
6 : sidi ← 0,Si,1 ← ∅

7 : (m∗, σ∗)←$AskO(·,·),Sign(·)(st, pp, pk, pkc, vk)

8 : if Vf(vk,m∗, σ∗) = 0 then

9 : return 0

10 : J ← Trace(m∗, σ∗) ⊆ [n]

11 : if J ̸⊆ Qsk ∪Qsig(m∗) then // the forgery traces to a set containing an honest party

12 : return 1

Oracle skO(i):

1 : Qsk ← Qsk ∪ {i}
2 : return ski

Oracle Sign1O(i,J ,m):

1 : sidi ← sidi + 1

2 : Si,1 ← Si,1 ∪ {sidi}

3 : (stsidii,1 ,msgsidii,1)←$ Sign1(ski,m,J)

4 : return msgsidii,1

Oracle Sign2O(i, sid, (m̃sgi1,1, . . . , m̃sgiℓ,1)):

1 : if sid ̸∈ Si,1 then

2 : return ⊥
3 : fi

4 : Qsig(m)← Qsig(m) ∪ {i}

5 : ssidi ←$ Sign2(st
sid
i,1, m̃sgi1,1, . . . , m̃sgiℓ,1)

6 : Si,1 ← Si,1 \ {sid}

7 : return ssidi

Fig. 7. The security game Guf
TMS for a two-round multisignature scheme TMS = (Setup,KeyGen, Sign, SigAgg,Vf,

Trace). In line 7, we write Sign(·) as a short hand for denoting that A has oracle access to the two oracles Sign1O(·, ·, ·)
and Sign2O(·, ·, ·).

29

B Efficient Proactive Refresh for the SIG3 Multisignature scheme

In this section, we present an efficient proactive refresh mechanism for the SIG3 scheme. We start
by providing the syntactic additions for proactive refresh, and defining the correctness and security
notions for such schemes.

B.1 Multisignatures with Proactive Refresh

Syntax. A Multisignature scheme with proactive refresh (MS-PR) is a Multisignature scheme that
is additionally equipped with a key-update procedure, whose role is to refresh the signers’ secret
keys without modifying the public key in any way. As also described in [BPR22], we can envision the
key-update procedure as dividing time into epochs. An epoch starts once one execution of the key-
update procedure ends (or, for the first epoch right after the invocation key generation algorithm),
and ends when the next execution of the key-update procedure ends. Following [BPR22], we define
the key-update procedure as a pair Update = (Update0,Update1) of algorithms:

– Update0 is a randomized algorithm that takes in a secret key skei of signer i in epoch e and the
public key pk, and outputs a vector (δei,1,, δ

e
i,n) of update messages. Each signer i sends δei,j

to the jth signer, for all j ̸= i.
– Update1 is a deterministic algorithm that takes in a secret key skei and n update messages

δe1,i, . . . , δ
e
n,i. It outputs an updated secret key ske+1

i for epoch e+ 1 for signer i.

For succinctness, we may write (ske+1
1 , . . . , ske+1

n)←$ Update(pk, ske1, . . . , sk
e
n) as a shorthand for the

random process of first invoking Update0(sk
e
i , pk) for every i ∈ [n] to randomly sample n2 update

messages {δi,j}i,j∈[n]; and then running Update1(sk
e
i , (δ

e
1,i, . . . , δn,i)) to obtain ske+1

i for every i ∈ [n].

Correctness. These algorithms must satisfy verification correctness and tracing correctness, similar
to those defined in Section 2.1. Informally, Vf should accept honestly-generated signatures in all
epochs, and Trace should trace to the set of signing parties, for honestly-generated signatures in
all epochs. More formally, for all messages m in the message space, all polynomials n = n(λ), all
positive integers e ≤ e(λ) and all non-empty subsets J ⊆ [n], it holds that,

Pr
[
Vf
(
vk,m,SigAgg(pkc, {Sign(skej ,m)}j∈J)

)
= 1

]
= 1,

Pr
[
Trace

(
m,SigAgg(pkc, {Sign(skej ,m)}j∈J)

)
= J

]
= 1,

where the probability is over the random variables pp←$ Setup(1λ, n),
(pk, pkc, vk, sk11, . . . , sk

1
n)←$ KeyGen(), (ski+1

1 , . . . , ski+1
n)←$ Update(pk, ski1, . . . , sk

i
n) for i = 1, . . . , e−

1, and the random coins of Sign.

Security. A multisignature with proactive refresh should satisfy unforgeability. As defined in Sec-
tion 5.1, the traditional unforgeability property states that an adversary should not be able to
produce a valid signature on a message m on behalf of a subset J of signers without observing the
secret key or signature share on m of all the signers in J . In the proactive refresh setting, we require
that this restriction on the adversary should hold in each epoch (thus allowing them to observe
secret keys/signature shares on m of all signers in J across different epochs). In other words, the
adversary is allowed to corrupt up to n− 1 parties in each epoch. Fig. 8 extends the security game
given in Section 5.1 to capture this unforgeability notion. The adversary first specifies the number
of parties n, which is followed by the challenger running Setup and KeyGen to sample keys for all

30

parties. The challenger sends the public parameters to the adversary and gets E, the number of
epochs. The challenger then runs the Update protocol E − 1 times to sample keys for epochs 2 to
E. The adversary then interacts with the challenger using two types of queries: Secret-key queries
and signature queries. A secret-key query (e, i) reveals to the adversary the secret key of signer i in
epoch e. A signature query (m, e, i) provides the adversary with an honestly-generated signature
share on m with respect to signer i’s secret key in epoch e. Finally, the adversary should produce
a valid forgery; that is, a message m∗ and a signature σ∗ that passes verification. Note that this
definition is similar to the uf-1 ∧ acc-1 notion defined in [BPR22].

Game Guf
PRMS with respect to an adversary A and security parameter λ

1 : (st, n)← A(λ)

2 : pp←$ Setup(1λ, n)

3 : (st, E)← A(st, pp)

4 : ∀ e ∈ [E],Qsk
e ← ∅

5 : ∀ m ∈M, e ∈ [E],Qsig
e (m)← ∅

6 : (pk, pkc, vk, sk11, . . . , sk
1
n)←$ KeyGen()

7 : for e = {2, . . . , E} do

8 : (ske1, . . . , sk
e
n)←$ Update(pk, ske−1

1 , . . . , ske−1
n)

9 : (m∗, σ∗)←$AskO(·,·),SignO(·,·,·)(st, pk, pkc, vk)

10 : if Vf(vk,m∗, σ∗) = 0 then

11 : return 0

12 : if ∀e ∈ [E],Trace(m∗, σ∗) ̸⊆ Qsk
e ∪Qsig

e (m∗) then return 1

Oracle skO(e, i)

1 : Qsk
e ← Qsk

e ∪ {i}
2 : return skei

Oracle SignO(m, e, i)

1 : σi ← Sign(skei ,m)

2 : Qsig
e (m)← Qsig

e (m) ∪ {i}
3 : return σi

Fig. 8. The security game Guf
PRMS for a Multisignature scheme with proactive refresh PRMS =

(Setup,KeyGen,Sign,SigAgg,Vf,Trace,Update). Note that if the adversary queries skO or SignO for an epoch e > E,
then the game outputs 0.

Definition 9 below defines the advantage of an adversary A in the game defined in Figure 8 as
the probability that the game outputs 1 when executed with A.

Definition 9. Let PRMS = (Setup,KeyGen,Sign,SigAgg,Vf,Trace,Update) be a Multisignature
scheme with proactive refresh. It is said to be secure if the following function is negligible in λ
for all PPT adversaries A:

AdvufPRMS,A(λ)
def
= Pr

[
Guf

PRMS,A(λ) = 1
]
.

31

B.2 The Multisignature scheme PRSIG3 with proactive refresh

Recall that the secret key of party i in SIG3 (defined in Section 5.2) is a BLS signature on (i)
with a secret key α. To refresh the keys, we simply set the secret keys to be BLS signatures on
(i, e) instead. Formally, we set the secret key for party i for epoch e to be (αi,e ,H1(i, e)

α), where
{αi,e}i∈[n] is an n-out-of-n additive secret sharing of the BLS secret key α. The KeyGen,Sign,SigAgg
functions can be extended directly. But now, to verify a signature, we would also need to know
which epoch was this signature generated in. To resolve this, we include the epoch number in the
signature. Hence, a signature in PRSIG3 is the tuple of e and the SIG3 signature on m with respect
to epoch e.

To update the secret keys, all the parties jointly generate BLS signatures on (i, e + 1) for all
i ∈ [n]. To do this, party i simply signs (j, e + 1) using its secret key share αi,e, and sends this
partial BLS signature H1(j, e+ 1)αi,e as the update message, to party j, for all j ̸= i. Each party j
then multiplies all the update messages received and also signs (j, e+1) using its own share of the
secret key αj,e, to get sk′j,e+1 ← H1(j, e+1)αj,e+Σi∈[n]\{j}αi,e . Secondly, all the parties jointly sample
a random n-out-of-n additive sharing of 0, i.e. a vector of n values {ai}i∈[n] that add up to zero.
Then, the new secret key of party j becomes a 3-tuple containing (e+ 1), αj,e + aj and sk′j,e+1.

To simplify the presentation, we present our scheme using a trusted setup, but the trusted
setup can be converted into a simple DKG using standard techniques. We use SymGroupGen(1λ)→
(G,GT , e, g, p) to denote a bilinear group generator that outputs a symmetric bilinear group. We
formally describe our scheme in Figure 9 where we use a symmetric bilinear group for simplicity.
The scheme can be easily generalized to use an asymmetric bilinear group.

Correctness. Correctness of PRSIG3 follows directly from correctness of the SIG3 scheme as ex-
plained in Section 5.2.

Security. Theorem 5 below reduces the security of PRSIG3 to the unforgeability of SIG3 and the
BLS signature scheme.

Theorem 5. For any adversary A there exist adversaries B1 and B2 with about the same runtime
as A such that

AdvufPRSIG3,A(λ) ≤ E · AdvufSIG3,B1(λ) + AdvufBLS,B2(λ)

where E = E(λ) is a bound on the number of epochs requested by A in Guf
PRSIG3

.

Proof. Let A be an adversary playing the game Guf
PRSIG3

. Let (m∗, σ∗) denote the message and
signature that A outputs at the end of the game. We assume without loss of generality that with
probability 1, the signature σ∗ is a 4-tuple containing (e∗, σ∗0, σ

∗
1,J ∗). Let E denote the number of

epochs specified by A in the beginning of the game. By total probability,

AdvufPRSIG3,A(λ) = Pr
[
Guf

PRSIG3,A(λ) = 1 ∧ e∗ ≤ E
]

+ Pr
[
Guf

PRSIG3,A(λ) = 1 ∧ e∗ > E
]

Theorem 5 now follows from Lemma 3 and Lemma 4.

Lemma 3. There exists an adversary B1 such that,

Pr
[
Guf

PRSIG3,A(λ) = 1 ∧ e∗ ≤ E
]
≤ E · AdvufSIG3,B1(λ)

32

The Multisignature scheme PRSIG3 with Proactive Refresh

Setup(1λ, n):

1. Sample a symmetric bilinear group (G,GT , e, g, p)←$ SymGroupGen(1λ) and output pp← (n,G,GT , e, g, p).
2. The system uses two hash functions, H0 :M→ G and H1 : [n]→ G.

KeyGen():

1. Sample α1, . . . , αn ←$ Zp. Set α← Σi∈[n]αi, h← gα and ski ← (1, αi,H1(i, 1)
α) for all i ∈ [n].

2. Output (pk = h, pkc = ⊥, vk = h, (sk1, . . . , skn)).

Sign(ski,m):

1. Parse ski as (ei, αi, sk
′
i). Sample ri ←$ Zp.

2. Compute σi,0 ← gri ∈ G and σi,1 ← sk′i · H0(m)ri ∈ G.
3. Output σi = (ei, σi,0, σi,1).

SigAgg(pkc, (σi1 , . . . , σi|J |)):

1. For j ∈ J : Parse σj as (ej , σj,0, σj,1).
2. Let e = ei1 . If for some j ∈ J , it holds that ej ̸= e, output ⊥.
3. Compute σ0 ←

∏
j∈J σj,0 and σ1 ←

∏
j∈J σj,1.

4. Output σ = (e, σ0, σ1,J).

Vf(vk,m, σ):

1. Parse vk as (h) and σ as (e, σ0, σ1,J).
2. Output 1 if e(σ1, g) = e(H0(m), σ0) · e(

∏
j∈J H1(j, e), h).

Trace(m,σ):

1. Parse σ as (e, σ0, σ1,J) and output J ⊆ [n].

Update0(pk, ski):

1. Parse pk as (h) and ski as (e, αi,e, sk
′
i,e).

2. Sample a1, . . . , an−1 ←$ Zp. Set an ← −Σj∈[n−1]aj .
3. Set σj,e+1 ← H1(j, e+ 1)αi,e for all j ∈ [n].
4. Output {δi,j ← (aj , σj,e+1)}j∈[n].

Update1(pk, skj , δ1,j , . . . , δn,j):

1. Parse δi,j as (ai,j , σi,j) for all i ∈ [n] and skj as (e, αj,e, sk
′
j,e).

2. Compute e′ = e+ 1, αj,e+1 ← αj,e +Σi∈[n]ai,j and sk′j,e+1 ←
∏

i∈[n] σi,j .

3. Output (e′, αj,e+1, sk
′
j,e+1).

Fig. 9. The Multisignature scheme PRSIG3 with Proactive Refresh

33

Proof (of Lemma 3). Consider the following adversary B1 playing the game Guf
SIG3

. B1 can issue
signature queries, secret key queries and random oracle queries to its challenger. To distinguish the
random oracles in Guf

SIG3
from the ones in Guf

PRSIG3
, we denote queries by B1 to its challenger as

Ĥ0(m) and Ĥ1(i).
B1 invokes A and simulates the game Guf

PRSIG3
as follows:

1. Receive (n) from A. Forward (n) to its challenger.
2. Receive pp, pk = (h), pkc = ⊥, vk = h from its challenger and forward pp to A. Let us use α to

denote the secret key of the SIG3 challenger, which is unknown to B1. So, h = gα.
3. Receive E from A, and forward pk, pkc, vk to A.
4. Guess ê←$ [E].
5. For all e ∈ [E] \ {ê} and all i ∈ [n], sample γi,e ←$ Zp. This will be used by B1 to respond to

random oracle queries.

Next, A issues a sequence of queries. B1 initializes the simulated oracles H0(m) ← ⊥ for all m
and H1(i, e)← ⊥ for all i ∈ [n], e ∈ [E].

B1 maintains a set Qsk
e for each e ∈ [E], to store all the parties for which A calls the secret

key oracle in epoch e. It also stores a mapping Se : [n] → Zp for all e ∈ [E], to record auxiliary
information for responding to skO queries in epoch e. We now discuss how B1 responds to each of
A’s queries:

– H0(m). B1 simply queries its challenger for Ĥ0(m), sets H0(m)← Ĥ0(m) and returns this value
to A.

– H1(i, e). If H1(i, e) ̸= ⊥, the B outputs H1(i, e). Otherwise, if e > E, B1 samples γi,e ←$ Zp, sets
H1(i, e)← gγi,e and returns this value.
Otherwise, if e ̸= ê, B1 responds with gγi,e (γi,e was sampled in Step 5 above). If e = ê, B1
queries its challenger for Ĥ1(i), sets H1(i, e)← Ĥ1(i) and forwards this to A.

– skO(j, e). If e > E, B1 aborts. Otherwise, it first adds j to Qsk
e . If |Qsk

e | = n, then B1 aborts.
Next, if Se(j) = ⊥, B2 samples Se(j)←$ Zp.
If e ̸= ê, then B1 returns (e, Se(j), h

γj,e). Note that this secret key is distributed identically to
a real secret key, since H1(j, e) = gγj,e implies that sk′j,e = (gγj,e)α = (gα)γj,e = hγj,e .
Lastly, if e = ê, B1 queries its challenger for sk′j,ê ← skO(j), and returns (e, Se(j), sk

′
j,ê).

Note that, sampling Se(j) uniformly randomly is distributed identically to real secret keys
because, for an adversary that only observes up to n− 1 secret keys in a single epoch e, all the
αi,e values appear uniformly random.

– SignO(j,m, e). If e > E, B1 aborts. B1 then calls H0(m). Next, if e ̸= ê, B1 samples r ←$ Zp, and
returns (e, gr, hγi,e · H0(m)r). This is distributed identically to a real signature since B1 knows
the secret key for all parties j ∈ [n], for all epochs e ̸= ê : sk′j,e ← hγj,e .
If e = ê, B1 queries σj,m,ê ← SignO(j,m) from its challenger. It returns (ê, σj,m,ê) to A.

Eventually, A outputs a forgery (m∗, σ∗), where σ∗ = (e∗, σ∗0, σ
∗
1,J ∗). B1 aborts if ê ̸= e∗ or if

e∗ > E. B1 also aborts if this is not a valid forgery, i.e. Vf(vk,m∗, σ∗) = 0 or, for some i ∈ [E],

Trace(m∗, σ∗) ⊆ (Qsk
e ∪Qsig

e (m∗)).
Otherwise, B1 forwards (m∗, (σ∗0, σ

∗
1,J ∗)) to its challenger. We claim that if B1 does not abort,

then B1 sends a valid forgery. To see this, observe that a valid forgery means that, in each epoch
e, Trace(m∗, σ∗) ̸⊆ (Qsk

e ∪ Qsig
e (m∗)). Specifically this means that for epoch e∗, Trace(m∗, σ∗) ̸⊆

34

(Qsk
e∗ ∪Q

sig
e∗ (m

∗)). Hence, B1 also gets a valid forgery since it only forwards queries for epoch e∗ = ê
to its challenger.

Let Abort denote the event in which B1 aborts prematurely. Let EA denote the event in which
A returns a valid forgery.

We now analyse the abort probability. Let E1 be the event where B1 aborts due to |Qsk
e | = n

for some e. Let E2 be the event where ê ̸= e∗. Let E3 be the event where e∗ > E. Let E4 be the
event that B1 aborts due to a skO or a SignO query for an epoch e > E. Let E5 be the event where
B1 aborts because A returns an invalid forgery. Observe that Pr

[
E2 | E3

]
= 1

E since B1 randomly
guesses the forgery epoch e∗ in [E]. Also note that for the forgery returned by A to be valid, A can
only query upto n − 1 secret keys within any epoch, meaning that the event E1 is implied by EA.
Additionally, A is not allowed to query secret keys or signatures for e > E, hence, EA also implies
E4. We also have that A can win only if E5 occurs. Combining the above, we get that,

AdvufSIG3,B1(λ) ≥ Pr
[
Abort

]
≥ Pr

[
E1 ∧ E2 ∧ E3 ∧ E4 ∧ E5

]
≥ Pr

[
E2 ∧ E3 ∧ (Guf

PRSIG3,A(λ) = 1)
]

≥ 1

E
· Pr
[
E3 ∧ (Guf

PRSIG3,A(λ) = 1)
]

≥ 1

E
· Pr
[
(e∗ ≤ E) ∧ (Guf

PRSIG3,A(λ) = 1)
]

This concludes the proof.

Lemma 4. There exists an adversary B2 such that

Pr
[
Guf

PRSIG3,A(λ) = 1 ∧ e∗ > E
]
≤ AdvufBLS,B2(λ)

Proof (of Lemma 4). Consider the following adversary B2 playing the game Guf
BLS. B2 can issue

signature, secret key and random oracle queries to its BLS challenger. To distinguish the random
oracle in Guf

BLS from the one in Guf
PRSIG3

, we denote queries by B2 to its challenger as Ĥ(·).
B2 invokes A and simulates the game Guf

PRSIG3
as follows:

– Receive (n) from A.
– Receive pp, pk = (h), pkc = ⊥ from its challenger. We use α to denote the secret key of the BLS

challenger, i.e. h = gα. Note that α is unknown to B2.
– Send pp to A, and receive E. Forward pk, pkc, vk = h to A.

Next, A issues a sequence of queries. B2 initializes the simulated oracles H0(m) ← ⊥ for all
messages, and H1(i, e)← ⊥ for all i ∈ [n], e ∈ [E].

B2 maintains the following metadata: (a) a mapping R :M→ Zp to store auxiliary information

for responding to H0 queries, (b) a set Qsk
e for each e ∈ [E], to store all the parties for which A

calls the secret key oracle in epoch e and (c) a mapping Se : [n] → Zp for each e ∈ [E], to store
auxiliary information for answering skO queries in epoch e.

We now discuss how B2 responds to each of A’s queries.

35

– H0(m). If H0(m) has been determined, i.e. H0(m) ̸= ⊥, then B2 returns H0(m). Otherwise, B2
samples δm ←$ Zp, sets H0(m)← gδm , R(m)← δm and returns H0(m).

– H1(i, e). B2 queries its challenger for Ĥ(i, e), and returns this value.

– skO(i, e). If e > E, B2 aborts (note that this is in line with the security game, wherein A is

not allowed to query secret keys or signatures for epochs e > E). Next, B2 adds i to Qsk
e , and

aborts if |Qsk
e | = n.

Otherwise, if Se(i) = ⊥, then B2 samples Se(i) ←$ Zp. B2 then queries its challenger for
SignO((i, e)) i.e. a signature on the tuple (i, e). We denote the response as σi,e. B2 responds
to A with (e, Se(i), σi,e). Note that this is distributed identically to a real secret key because (i)
for an adversary that only sees up to n− 1 secret keys in an epoch, αi values appear uniformly
random, (ii) σi,e = Ĥ(i, e)α = H1(i, e)

α is indeed the correct secret key.

– SignO(i,m, e). If e > E, B2 aborts. Otherwise, B2 calls H0(m). Next, B2 queries its challenger for
SignO((i, e)) to get σi,e ← H1(i, e)

α. B2 then samples ri,e ←$ Zp and returns (e, gri,e ,H0(m)ri,e ·
σi,e). This is indeed a valid signature on m since σi,e is the correct secret key for party i in
epoch e.

Eventually, A outputs a forgery (m∗, σ∗) where σ∗ = (e∗, σ∗0, σ
∗
1,J ∗). Without loss of generality,

we assume that A queried H0(m
∗) before outputting the forgery, meaning that R(m∗) ̸= ⊥.

B2 aborts if A does not return a valid forgery, i.e. if Vf(vk,m∗, σ∗) = 0 or for some e ∈ [E],

Trace(m∗, σ∗) ⊆ (Qsk
e ∪Qsig

e (m∗)). B2 also aborts if e∗ ≤ E.

Otherwise, since A returns a valid forgery and e∗ > E, A could not have queried skO(i, e∗)
or SignO(i, ·, e∗) for any i. Specifically, this means that B2 never asked its BLS challenger for a
signature on (i, e∗) for any i ∈ J ∗. Let J ∗ = i1, . . . , i|J ∗|. Then, B2 queries its BLS challenger for
σi2,e∗ ← SignO((i2, e

∗)), . . . , σi|J∗|,e∗ ← SignO((i|J ∗|, e
∗)). B2 returns

(
(i1, e

∗),
σ∗1

(σ∗0)
R(m∗) ·

∏
j∈J ∗\{i1} σj,e∗

)

We claim that this is a valid BLS forgery. To prove that, we first observe that B2 never queried its
challenger for a signature on (i∗1, e

∗). Secondly, if A returned a valid forgery, then we have

e(σ∗1, g) = e(H0(m
∗), σ∗0) · e

 ∏
j∈J ∗

H1(j, e
∗), h

36

We now use the above equation to get that,

e

(
σ∗1

(σ∗0)
R(m∗) ·

∏
j∈J ∗\{i1} σj,e∗

, g

)
=

e(σ∗1, g)

e((σ∗0)
R(m∗), g) · e

(∏
j∈J ∗\{i1} σj,e∗ , g

)
=

e(H0(m
∗), σ∗0) · e

(∏
j∈J ∗ H1(j, e

∗), h
)

e((σ∗0)
R(m∗), g) · e

(∏
j∈J ∗\{i1} σj,e∗ , g

)
=

e(gR(m∗), σ∗0) · e
(∏

j∈J ∗ H1(j, e
∗), h

)
e((σ∗0)

R(m∗), g) · e
(∏

j∈J ∗\{i1} σj,e∗ , g
)

=

∏
j∈J ∗ e(H1(j, e

∗), h)∏
j∈J ∗\{i1} e(σj,e∗ , g)

=

∏
j∈J ∗ e(Ĥ(j, e∗), h)∏

j∈J ∗\{i1} e(Ĥ(j, e
∗), h)

(5)

= e(Ĥ(i1, e
∗), h) (6)

Equation 5 follows from the validity of signatures returned by the BLS challenger and from our
programming of the H1 oracle – specifically, H1(j, e) = Ĥ(j, e) for any j, e.

The above equation implies that the forgery returned by B2 is indeed valid. Let Abort denote
the event in which B2 aborts prematurely. Let EA denote the event where A returns a valid forgery.
Let E1 be the event where B2 aborts due to |Qsk

e | = n for some e. Note that E1 is contained in the
event EA, because A can return a valid forgery only if it queries less than n secret keys in each
epoch. Next, let E2 denote the event where B2 aborts due to e∗ ≤ E. Let E3 be the event where B2
aborts due to a secret key or a signing oracle query for some e > E. E3 is contained in the event
EA, because the adversary can win only if it never makes such a query. Let E4 be the event that
B2 aborts because A does not output a valid forgery.

Then by the above discussion, we have that, the event Abort implies that B2 wins its game.
Combining the above, we get that

Pr
[
Guf

BLS,B2(λ) = 1
]
≥ Pr

[
Abort

]
AdvufBLS,B2(λ) ≥ Pr

[
E1 ∧ E2 ∧ E3 ∧ E4

]
≥ Pr

[
E2 ∧ (Guf

PRSIG3,A(λ) = 1)
]

≥ Pr
[
(e∗ > E) ∧ (Guf

PRSIG3,A(λ) = 1)
]

This proves the lemma.

C Deferred Proofs

C.1 Proof of Theorem 2

Proof (of Theorem 2). Consider the following adversary B playing the game Gn-bdh
G,nmax

. It gets input
(G1,G2,GT , e, g1, g2, p, {ui, ui,2}i∈[nmax]) from its challenger. B invokes A and simulates the game

Gsa-uf
SIG2

as follows:

37

– Receive n from A.
– Send ppg ← (G1,G2,GT , e, g1, g2, p, {ui}i∈[n], n) to A.
– Receive (m∗, i∗) from A. Forward i∗ to its challenger.

– Receive (ui∗,2, ga,1 = ga1 , ga,2 = ga2 , gc,1 = gc1, gc,2 = gc2, {(ui,a = uai , ui,c = uci)}i∈[n]\{i∗}) from its
challenger.

– Sample β0 ←$ Zp and set v0 ← ga,1 and h0 ← g−m
∗

a,1 gβ0
1 . Send pp← (ppg, v0, h0) to A.

– Set pk∗i∗,0 ← ga,2. This means that the secret key αi∗ is a, but this value is unknown to B.
– Send pk∗ ← (pk∗i∗,0, {ui,a}i∈[n]\{i∗}) to A. Note that this is a valid public key because, for any

j ∈ [n] \ {i∗}, pki∗,j = u
αi∗
j = uaj = uj,a.

Next, A issues a sequence of signing queries. We now discuss how B responds to A’s queries:
SignO(m). If m = m∗, then B aborts. Note that since m∗ is the forgery message, A will lose its

game if it queries a signature on m∗.

Otherwise, B samples rm ←$ Zp, and generates a signature as follows:

(σm,0 ← gr2 · u
−1

m−m∗
i∗,2 , σm,1 ← (vm0 h0)

r · u
−β0

m−m∗
i∗)

We claim that this signature is distributed identically to a real signature. To see this, let r̃ ←
r − b

m−m∗ where gb1 = ui∗ (which implies ui∗,2 = gb2 by definition). Then,

σm,0 = gr2 · u
−1

m−m∗
i∗,2

= gr2 · g
−b

m−m∗
2

= gr̃2

σm,1 = (vm0 h0)
r̃ · (vm0 h0)

b
m−m∗ · u

−β0
m−m∗
i∗

= (vm0 h0)
r̃ · (gm−m∗

a,1 gβ0
1)

b
m−m∗ · g

−bβ0
m−m∗
1

= (vm0 h0)
r̃ · gba,1

Next, observe that ski∗ = a, and since ui∗ = gb1, we get that uai∗ = gab1 = gba,1. This means that the

above signature is of the form (gr̃2, u
a
i∗ · (vm0 h0)

r̃), and r̃ is uniform in Zp as required. Hence, this is
a valid response to the signing query.

Eventually, A outputs a list of public keys (pk∗1, . . . , pk
∗
n) and a forgery (m∗, (J ∗, σ∗0, σ∗1)). B aborts

if pk∗ ̸= pk∗i∗ , or if m
∗ ∈ Qsig or if i∗ ̸∈ J ∗. Note that A would lose the game if any of these three

conditions are true.

B then runs the key aggregation procedure to get (pkc∗, vk∗ ← KeyAgg((pk∗1, . . . , pk
∗
n)), and

aborts if either of pkc∗ or vk∗ are ⊥ or if Vf(vk∗,m∗, σ∗) = 0. Observe that A’s forgery is invalid if
any of these conditions are true.

Lastly, B responds to its challenger with the following:

W =
e(σ∗1, gc,2)

e(gβ0
c,1, σ

∗
0) ·
∏

j∈[n]\{i∗} e(pk
∗
j,i∗ , gc,2) · e(

∏
i∈J ∗\{i∗} ui,c, vk

∗)

38

We claim that if B did not abort, then B wins the n-BDH game. To see this, observe the
following: First, the forgery being valid implies that,

e(σ∗1, g2) = e(vm
∗

0 h0, σ
∗
0) · e(

∏
j∈J ∗

uj , vk
∗)

= e(gm
∗

a,1 g
−m∗

a,1 gβ0
1 , σ∗0) · e(ui∗ ·

∏
j∈J ∗\{i∗}

uj , ga,2 ·
∏

i∈[n]\{i∗}

pk∗i,0)

= e(gβ0
1 , σ∗0) · e(ui∗ , ga,2) · e(ui∗ ,

∏
i∈[n]\{i∗}

pk∗i,0) · e(
∏

j∈J ∗\{i∗}

uj , vk
∗)

Next, since KeyAgg output a pkc∗ that is not ⊥, we know that all n public keys output by A are
valid. Specifically, this means that for all i ∈ [n] \ {i∗}, we have that,

e(ui∗ , pk
∗
i,0) = e(pk∗i,i∗ , g2)

Combining the two equations, we get that,

e(ui∗ , ga,2) =
e(σ∗1, g2)

e(gβ0
1 , σ∗0) ·

∏
i∈[n]\{i∗} e(pk

∗
i,i∗ , g2) · e(

∏
j∈J ∗\{i∗} uj , vk

∗)

Raising both sides to power c gives us:

e(ui∗ , ga,2)
c =

e(σ∗1, g2)
c

e(gβ0
1 , σ∗0)

c ·
∏

i∈[n]\{i∗} e(pk
∗
i,i∗ , g2)

c · e(
∏

j∈J ∗\{i∗} uj , vk
∗)c

e(ui∗ , g
a
2)

c =
e(σ∗1, gc,2)

e(gβ0
c,1, σ

∗
0) ·
∏

i∈[n]\{i∗} e(pk
∗
i,i∗ , gc,2) · e(

∏
j∈J ∗\{i∗} uj,c, vk

∗)

e(ui∗ , g2)
ac =

e(σ∗1, gc,2)

e(gβ0
c,1, σ

∗
0) ·
∏

i∈[n]\{i∗} e(pk
∗
i,i∗ , gc,2) · e(

∏
j∈J ∗\{i∗} uj,c, vk

∗)

This proves that if B does not abort, then B responds correctly to its challenger. Let Abort be the
event that B aborts. This gives us,

Advn-bdhG,nmax,B(λ) = Pr[Abort]

Next, observe that B aborts if one of the following conditions hold: (i) pk∗ ̸= pk∗i∗ , (ii) m
∗ ∈ Qsig,

or (iii) i∗ ̸∈ J ∗ or (iv) pkc∗ = ⊥ or vk∗ = ⊥ or (v) Vf(vk∗,m∗, σ∗) = 0 or (vi) A queries SignO(m∗).
Since the adversary A can win its game only if none of these conditions hold, we get that,

Pr[Abort] ≥ Advsa-ufSIG2,A(λ)

Hence we get,

Advn-bdhG,nmax,B(λ) ≥ Advsa-ufSIG2,A(λ)

This proves the theorem.

39

C.2 Proof of Theorem 3

Proof (of Theorem 3). Consider the following adversary B playing the game Gco-bdh
G . On input

the group description (G1,G2,GT , g1, g2, e, p) and (ga,1 = ga1 , ga,2 = ga2 , gb,1 = gb1, gb,2 = gb2, gc,1 =
gc1, gc,2 = gc2) from its challenger, B invokes A and simulates the game Guf

SIG3
as follows:

1. Receive (n) from A.
2. Set pp← (n,G1,G2,GT , g1, g2, e, p).
3. Guess j∗ ←$ [n]. Sample β1, . . . , βj∗−1, βj∗+1, . . . , βn ←$ Zp.
4. Set h ← ga,2 and send pp, pk = h, pkc = ⊥, vk = h to A. This means that, the value α is equal

to a, and is unknown to B.

Next, A issues a sequence of queries. We use qS , qH to denote a bound on the number of signing
queries and random oracle queries on H0 respectively.
B initializes the simulated oracle H1(j) ← ⊥ for all j, and H0(m) ← ⊥ for all values of m. B

also samples a random value δ ←$M.
B maintains two mappings R : M → Zp and R′ : M → {0, 1} to track auxiliary information

used to answer H0 queries. Both R and R′ are initialized with ⊥ for all messages.
For signing queries, B stores a list Qj∗

sig, to store all the messages m for which A queries
SignO(j∗,m). This list is initialized with ⊥.

We now discuss how B responds to each of A’s queries:

– H0(m). If m = δ, then B aborts. Otherwise, if H0(m) has been determined, i.e. if H0(m) ̸= ⊥,
then, B returns the value H0(m). If not, B samples xm ←$ [qS + 1] and γm ←$ Zp uniformly
randomly. We use xm as a biased coin that is equal to 1 with probability 1/(qS + 1).
• If xm ̸= 1, then it sets R(m)← γm, R′(m)← 0 and H0(m)← gγm1 · gm−δa,1 .

• If xm = 1, it sets R(m)← γm, R′(m)← 1 and H0(m)← gγm1 .
B returns H0(m) to A and continues the game. Note that since γm is sampled randomly from
Zp, the value H0(m) will be indistinguishable from uniformly random for A.

– H1(j). If j ̸= j∗, then B returns g
βj

1 . Otherwise, B returns gb,1. Note that since all the βj values
are sampled randomly, H1 will be indistinguishable from random for A.

– skO(j). If j = j∗, then B aborts. Otherwise, B responds with g
βj

a,1. This is the correct secret key

because, for any j ̸= j∗, H1(j) = g
βj

1 , meaning that skj = H1(j)
α = (g

βj

1)a = (ga1)
βj = g

βj

a,1.
– SignO(j,m). We first call H0(m). At this point we can assume that m ̸= δ, since otherwise B

would have aborted when querying for H0(m). Next,

• For any j ̸= j∗, B samples r ←$ Zp, and returns (gr2, g
βj

a,1 · H0(m)r) to A. As pointed out

earlier, skj = g
βj

a,1, meaning that this signature is distributed identically to a real signature.
• For j = j∗, B aborts if R′(m) = 1. Otherwise, B samples r ←$ Zp and generates a signature
as follows:

(σj∗,m,0 ← gr2 · g
−1

m−δ

b,2 , σj∗,m,1 ← H0(m)r · g
−R(m)
m−δ

b,1)

Here, R(m) is the value γm that was sampled by B when responding to H0(m) query. Note
that R(m) cannot be ⊥ since we always query H0(m) implicitly during any signing query
on m.
We claim that this signature is distributed identically to a real signature. To see this, let
r̃ ← r − b

m−δ . Then,

40

σj∗,m,0 = gr2 · g
−1

m−δ

b,2

= gr2 · g
−b

m−δ

2

= g
r− b

m−δ

2

σj∗,m,1 = H0(m)r · g
−R(m)
m−δ

b,1

= H0(m)r̃H0(m)
b

m−δ · g
−R(m)
m−δ

b,1

= H0(m)r̃(gγm1 · gm−δa,1)
b

m−δ · g
−γm
m−δ

b,1

= H0(m)r̃g
bγm
m−δ

1 gba,1 · g
−γm
m−δ

b,1

= H0(m)r̃g
bγm
m−δ

1 gab1 · g
−bγm
m−δ

1

= H0(m)r̃ · gab1

Next, observe that skj∗ = H1(j
∗)a, and since H1(j

∗) = gb,1, we get that skj∗ = gab,1 = gab1 .

This means that, the above signature is of the form (gr̃2,H0(m
∗)r̃ · skj∗), and r̃ is uniform in

Zp as required. Hence, it is a valid response to the signing query. Lastly, B adds m to the

list Qj∗

sig.

Eventually,A outputs a forgery (m∗, (J ∗, σ∗0, σ∗1)). B aborts if j∗ ̸∈ J ∗, or ifm∗ ∈ Qj∗

sig. B also aborts
if R′(m∗) = 0 or if A does not return a valid forgery, i.e. if Vf(vk,m∗, σ∗) = 0 or Trace(m∗, σ∗) ⊆
Qsk ∪Qsig(m∗). Otherwise, B responds with the following expression:

e(σ∗1, gc,2)

e(g
R(m∗)
c,1 , σ∗0) · e(g

Σj∈J∗\{j∗}βj

c,1 , h)

We claim that if B does not abort, then B wins the co-bdh game. To see this, we note that the
forgery being valid implies the following:

e(σ∗1, g2) = e(H0(m
∗), σ∗0) · e(

∏
j∈J ∗

H1(j), h) (7)

= e(g
R(m∗)
1 , σ∗0) · e(

∏
j∈J ∗

H1(j), g
a
2) (8)

= e(g
R(m∗)
1 , σ∗0) · e(gb,1

∏
j∈J ∗\{j∗}

H1(j), g
a
2) (9)

= e(g
R(m∗)
1 , σ∗0) · e(gb,1, ga,2) · e(

∏
j∈J ∗\{j∗}

H1(j), ga,2) (10)

= e(g
R(m∗)
1 , σ∗0) · e(gb,1, ga,2) · e(g

Σj∈J∗\{j∗}βj

1 , ga,2) (11)

41

Equation 7 follows from the validity of the forgery. Equation 8 uses the fact that h = ga,2 and

H0(m
∗) = g

R(m∗)
1 , since R′(m∗) = 1. Next, since j∗ ∈ J ∗ and H1(j

∗) = gb,1, we get Equation 9.

Equation 11 follows from the fact that B programmed H1(j) to be g
βj

1 for all j ̸= j∗.
The above equation implies that

e(gb,1, ga,2) =
e(σ∗1, g2)

e(g
R(m∗)
1 , σ∗0) · e(g

Σj∈J∗\{j∗}βj

1 , ga,2)

Raising both sides to the power c, we get,

e(gb,1, ga,2)
c =

e(σ∗1, g2)
c

e(g
R(m∗)
1 , σ∗0)

c · e(gΣj∈J∗\{j∗}βj

1 , ga,2)c

e(gb,1, ga,2)
c =

e(σ∗1, g
c
2)

e(g
cR(m∗)
1 , σ∗0) · e(g

c·Σj∈J∗\{j∗}βj

1 , ga,2)

e(gb,1, ga,2)
c =

e(σ∗1, g
c
2)

e(g
R(m∗)
c,1 , σ∗0) · e(g

Σj∈J∗\{j∗}βj

c,1 , ga,2)

e(gb1, g
a
2)

c =
e(σ∗1, gc,2)

e(g
R(m∗)
c,1 , σ∗0) · e(g

Σj∈J∗\{j∗}βj

c,1 , ga,2)

e(g1, g2)
abc =

e(σ∗1, gc,2)

e(g
R(m∗)
c,1 , σ∗0) · e(g

Σj∈J∗\{j∗}βj

c,1 , ga,2)

This proves that if B does not abort, then it responds correctly to its challenger.
Let Abort denote the event in which B aborts prematurely. This means that,

Pr
[
Gco-bdh
G,B (λ) = 1

]
= Pr

[
Abort

]
We now analyse the abort probability. Let E1 be the event where B aborts due to a H0 query

on δ. Let E2 be the event where B guessed j∗ correctly, i.e. (a) j∗ ∈ J and (b) A never queries

skO(j∗) and (c) m∗ ̸∈ Qj∗

sig. Let E3 be the event where B aborts during a signing query because
R′(m) = 1. Let E4 be the event where B aborts due to R′(m∗) = 0. Let E5 be the event where B
aborts because A outputs an invalid forgery.

Next, observe that Pr
[
E1

]
=
(
1− 1

p

)qS+qH
≥ 1 − (qS+qH)

p , since B implicitly queries H0(m)

whenever A queries SignO(·,m). For E2, we note that, for A to produce a valid forgery, there has
to be at least one party ĵ, such that ĵ ∈ J ∗ but A never queries skO(ĵ) or SignO(ĵ,m∗). Hence,

Pr
[
E2 | E5

]
≥ 1

n . Pr
[
E3 | E1

]
=
(
1− 1

qS+1

)qS
≥ 1

e , since R′(m) is set to 1 with a probability 1
qS+1

for all m. Similarly, we get Pr
[
E4 | E1

]
= 1

qS+1 .
Combining the above, we get that,

Pr
[
Abort

]
= Pr

[
E1 ∧ E2 ∧ E3 ∧ E4 ∧ E5

]
= Pr

[
E2 | E5

]
· Pr
[
E5

]
· Pr
[
E1 ∧ E3 ∧ E4

]
= Pr

[
E2 | E5

]
· Pr
[
E5

]
· Pr
[
E1

]
· Pr
[
E3 | E1

]
· Pr
[
E4 | E1

]
≥ 1

n
· AdvufSIG3,A(λ) ·

(
1− (qS + qH)

p

)
· 1
e
· 1

qS + 1

42

Lastly, since we assume that 2(qS + qH) < p, we get that(
1− (qS + qH)

p

)
≥ 1

2

. This combined with the above equation completes the proof.

C.3 Proof of Theorem 4

General Forking Lemma We restate the general forking lemma from [BN06], since it is used in
the unforgeability proof of the scheme LSIG3.

Lemma 5. Let Q be a number of queries and C be a set of size > 2. Let B be a randomized
algorithm that on input x, h1, . . . , hQ returns an index i ∈ [0, Q] and a side output out. Let IGen be
an input generator. Let FB be a forking algorithm that works as in Fig. 10 given x as input and
given black-box access to B. Suppose the following probabilities:

acc := Pr[i ̸= 0 : x←$ IGen(1λ);h1, . . . , hQ ←$ C; (i, out)←$ B(x, h1, . . . , hQ)]

frk := Pr[b = 1 : x←$ IGen(1λ); (b, out, out′)←$ FB(x)]

Then,

frk ≥ acc ·
(
acc

Q
− 1

|C|

)

The forking algorithm FB

On input x,

1. Pick a random coin ρ for B and sample h1, . . . , hQ ←$ C.
2. (i, out)←$ B(x, h1, . . . , hQ; ρ). If i = 0 then output (0,⊥,⊥).
3. Sample h′

i, . . . , h
′
Q ←$ C.

4. Then run (i′, out′)←$ B(x, h1, . . . , hi−1, h
′
i, . . . , h

′
Q; ρ).

5. If i = i′ and hi ̸= h′
i then output (1, out, out′), otherwise output (0,⊥,⊥).

Fig. 10. The forking algorithm FB

Proof (of Theorem 4). We first construct an algorithm B around A that simulates the behavior of
the challenger in the game Guf

LSIG3
. Then, we invoke the forking algorithm FB from Lemma 5 to

obtain two forgeries with distinct challenges, which allow to construct a solution to MSIS or break
binding of the commitment scheme Com. We now discuss how to realize this via several intermediate
hybrids, as in [DOTT21].

Let qH , qS denote an upper bound on the number of random oracle and signing queries by A
respectively.

G0. B gets as input {hi ∈ C}i∈[qH+qS+1] along with (ck ∈ Sck,A ∈ Rk×ℓ, t). We will discuss where
these inputs come from later in the proof.

43

B receives n from A, and runs (n, cpp) = pp ←$ Setup(1λ, n). B samples i∗ ←$ [n], as its guess
for the party that A will try to blame in its forgery.

Next, for all i ∈ [n], it samples ti ←$ Rk and sets H1(i)← ti. It then runs (pk, pkc, vk, (sk1, . . . , skn))←$

KeyGen(), and sends (pp, pk, pkc, vk) to A.
Next, A issues a sequence of queries. B maintains hash tables to store auxiliary information

about responses to these queries. Specifically, it maintains Tchal : {0, 1}∗ → C, Ttd : {0, 1}∗ → Std

and Tck : {0, 1}∗ → Sck. These are initialized with ⊥ for all input values. B also maintains a counter
ctr which is initialized with 0. We now show how B responds to A’s queries:

– H1(i): B responds with ti.

– Hck(x): If Tck(x) = ⊥, it samples Tck(x)←$ Sck, and then outputs Tck(x).

– Hchal(x): Parse x as (m, pk,J , c, i). B first queries Hck(m, pk). If Tchal(x) = ⊥, then,
• If i ∈ J and i∗ ∈ J , then, for all i ∈ J \ {i∗}, set Tchal(m, pk,J , c, i) ←$ C. Next, set
ctr ← ctr + 1 and Tchal(m, pk,J , c, i∗)← hctr.

• Otherwise, set Tchal(m, pk,J , c, i)←$ C.

B then returns Tchal(x).

– skO(i) : If i = i∗ then B returns (0,⊥) (and ends the simulation). Otherwise, B outputs ski.

– Sign1O(·) : B behaves exactly like the honest protocol.

– Sign2O(·) : B behaves exactly like the honest protocol.

When A outputs its forgery m∗, σ∗ = (z∗, r∗, ĉ∗,J ∗) in the end, if i∗ ̸∈ J ∗ or if i∗ ∈ Qsig(m∗),
then B outputs (0,⊥) and ends the simulation. Let ck∗ ← Hck(m

∗, pk), and {d∗j ← Hchal(m
∗, pk,J ∗, ĉ∗, j)}j∈J ∗ .

Compute w∗ ← Āz∗ −Σj∈J ∗d∗jH1(j). If ||z∗||2 > B or if Com.Open(ck∗, ĉ∗,w∗; r∗) = 0, B outputs
(0,⊥) and ends the game.

Otherwise, B finds index if such that d∗i∗ = hif , and then outputs (if , out = (ĉ∗, {d∗j}j∈J ∗\{i∗}, d
∗
i∗ , z

∗, r∗,m∗,J ∗, ck∗)).
For any i ∈ N, let Pr[Gi] be the probability that B does not output (0,⊥) at the end of game

Gi.

Observe that, for the forgery to be valid, there must be at least one index î ∈ J ∗ which is not
in Qsk ∪Qsig(m∗). Hence B will correctly guess i∗ with probability at least 1/n, which gives us:

Pr[G0] =
1

n
AdvufLSIG3,A(λ)

G1. This game is identical to G0 except at the following points.

– Hck(x): Parse x as (m, pk). If Tck(x) = ⊥, then with probability ω, B computes (tck, td) ←$

Com.TCGen(cpp), sets Ttd(x) ← td, Tck(x) ← tck. With probability 1 − ω, B sets Tck(x) ← ck
(ck is one of the inputs to B). Finally, B sends Tck(x) to A.

– Sign1O(m,J , i) : If i ̸= i∗, then, B simply executes the signing procedure as in the protocol.
Otherwise, it first queries Hck(m, pk). If Ttd(m, pk) = ⊥ (i.e. TCGen was not called), B sets a flag
bad4 and halts with output (0,⊥). Otherwise, let td← Ttd(m, pk). Then, instead of committing
to wi∗ , B does ci∗ ←$ Com.TCommit(Tck(m, pk), td). The rest of the Sign1 protocol remains the
same, i.e. B responds with ci∗ .

– Sign2O(·) : If i ̸= i∗, then, B simply executes the signing procedure as in the protocol. Otherwise,
after computing zi∗ ← di∗ski∗ + yi∗ , B derives the randomness for the trapdoor commitment:
ri∗ ← Com.Eqv(Tck(m, pk), Ttd(m, pk), ci∗ ,wi∗).

44

WhenA outputs a forgery at the end of the game, then, similar toG0, B computes ck∗, {d∗j}j∈J ∗ .
If Com.Open(ck∗, ĉ∗,w∗; r∗) = 0 or ||z∗||2 > B then B halts and outputs (0,⊥). If Ttd(m

∗, pk) ̸= ⊥,
i.e. (TCGen was called for (m∗, pk)), then B sets a flag bad5 and halts with output (0,⊥). This
means that, if B does not halt, then, ck∗ = ck = Hck(m

∗, pk).
Observe that the simulation is only successful if the random oracle Hck internally uses a trapdoor

commitment key for all but one query, and it uses a predefined key ck for the forgery query: (m∗, pk).
In other words, it is successful if neither of bad4 or bad5 flags are set. Combining with the fact that
the statistical distance between each commitment key in G0 and the corresponding trapdoor-based
commitment key in G1 is bounded by ϵtd, we get that,

Pr[G1] ≥ ωqH+qS · (1− ω) · Pr[G0]− (qH + qS) · ϵtd

We set ω = qH+qS
qH+qS+1 , so we get:

Pr[G1] ≥
Pr[G0]

e(qH + qS + 1)
− (qH + qS) · ϵtd

G2. The game is identical to G1 except for how B responds to signing queries for i∗:
B does not generate zi∗ honestly. Instead, in Sign1O, it simply samples a trapdoor commitment

ci∗ (like in game G1) , and in Sign2O, it samples zi∗ ←$ Dk+ℓ
s and derives randomness ri∗ ←

Com.Eqv(Tck(m, pk), Ttd(m, pk), ci∗ , Āzi∗ − di∗H1(i
∗)). Here, di∗ is the Hchal(m, pk,J , c, i∗) value

with J , c corresponding to this particular signing query. Then, with probability 1−1/M , it aborts,
and otherwise, it outputs si∗ as defined in the protocol.

The signature simulated this way is statistically indistinguishable from that generated honestly,
because rejection sampling ensures that the real signature is distributed identically to the gaussian
distribution Dk+ℓ

s . By Lemmas 3 and 4 from [DOTT21] (which extend Lemma 2), we get that

|Pr[G2]− Pr[G1]| ≤ qS ·
2e−t

2

M

G3. Observe that, signature queries on i∗ for any message do not actually use the secret key of this
party. We now make the following changes to B:
Key Generation. Our overall goal is to embed a challenge commitment key ck and an instance

of MSISq,k,ℓ+1,β which is denoted as [A′|I] with A′ ←$ R
k×(ℓ+1)
q . In G2, the tuple (A,H1(i

∗))
(where [A|Ik] is the public key) is uniformly distributed in Rk×ℓ

q × Rk
q , so we can simply replace

it with A′, which can be regarded as [A|H1(i
∗)]. Additionally, the simulation of Hck guarantees

that ck follows the uniform distribution over Sck which is perfectly indistinguishable from honestly
generated commitment keys, since the keys are uniform.

More formally, given an MSIS instance A′ = [Â|t] and a challenge commitment key ck, the
inputs to B are (ck, Â, t). It then sets pk = [Â|Ik] (instead of running the KeyGen algorithm).
Next, it sets H1(i

∗)← t. For all i ∈ [n] \ {i∗}, it samples a short vector ski ←$ Sk+ℓ
η , and programs

H1(i)← ([Â|Ik] · ski) mod q. We set η̂ = η, so that by the tail bound in Lemma 1, the secret keys
in G2 and this game have L2 norm bounded by

√
ℓ+ k · η with high probability. Observe that if

an adversary can distinguish between this game and G2, then we can use it to build an adversary
B1 that can break MLWE.

The rest of the simulation remains the same (except for H1 queries which are now answered
based on the programming described above).

45

So we get that there exists an adversary B1 with the following advantage:

|Pr[G3]− Pr[G2]| ≤ (n− 1) · AdvMLWEq,k,ℓ,η ,B1(λ)

The proof is by a hybrid argument. Consider a series of games: G2,i for i ∈ [0, n− 1], where in
G2,i, the first i secret keys in [n] \ {i∗} are sampled like in G3, and the remaining (n− i− 1) secret
keys are sampled as in the game G2. Then, for each i, there exists an adversary B′i that can break
MLWEq,k,ℓ,η when given an adversary Bi that can distinguish between G2,i and G2,i+1. Note that
G2,0 = G2 and G2,n−1 = G3. So the adversary B1 simply samples i ←$ [n − 1] and invokes B′i to
decide on its output. Hence, the advantage of B1 is at least 1/(n − 1) times the advantage of an
adversary in distinguishing between G2 and G3.

We now prove the theorem by constructing B′ around B that either (1) breaks binding of
commitment with respect to ck, or (2) finds a solution to the MSISq,k,ℓ+1,β on input A′ = [Â|t].
B′ invokes FB on input (ck, Â, t) from Lemma 5. With probability frk we get two forgeries, out =

(c∗, {d∗j}j∈J ∗\{i∗}, d
∗
i∗ , z

∗, r∗,m∗,J ∗, ck∗) and ˆout = (ĉ∗, {d̂∗j}j∈Ĵ ∗\{̂i∗}, d̂
∗
î∗
, ẑ∗, r̂∗, m̂∗, Ĵ ∗, ĉk∗), where

frk satisfies:

Pr[G3] = acc ≤ qH + qS + 1

|C|
+
√

(qH + qS + 1) · frk

By construction of B and FB, we have that A’s view is identical in the two executions until the
point of forking if . Additionally, B samples i∗, samples ski for all i ∈ [n]\{i∗} and sets H1(i) ∀ i ∈ [n]

before the forking point. Hence, we have c∗ = ĉ∗, J ∗ = Ĵ ∗, i∗ = î∗, d∗j = d̂∗j for all j ∈ J ∗ \ {i∗},
m∗ = m̂∗, and ck∗ = ĉk

∗
because Hck(m

∗, pk) is invoked right before Hchal is programmed.
Since both forgeries are verified under the same commitment key ck, we have that, ||z∗||2 ≤ B

and ||ẑ∗||2 ≤ B. Moreover,

Com.Open(ck, c∗, r∗, Āz∗ −Σj∈J ∗\{i∗}d
∗
jH1(j)− d∗i∗t) = 1

Com.Open(ck, c∗, r̂∗, Āẑ∗ −Σj∈J ∗\{i∗}d
∗
jH1(j)− d̂∗i∗t) = 1

There are two cases. If Āz∗ − d∗i∗t ̸= Āẑ∗ − d̂∗i∗t then B′ breaks computational binding with
respect to key ck, and can succeed only with probability ≤ ϵbind. If Āz∗ − d∗i∗t = Āẑ∗ − d̂∗i∗t,
rearranging the terms gives us,

[Â|Ik|t]
[
z∗ − ẑ∗

d̂∗i∗ − d∗i∗

]
= 0

Recall that [A′|Ik] = [Â|t|Ik] is an instance of the MSISq,k,ℓ+1,β problem, we have found a valid
solution if β =

√
2B2 + 4κ. Putting the two cases together, we get that there exists an adversary

B2 that uses B′ as a sub-procedure such that,

frk ≤ ϵbind + AdvMSISq,k,ℓ+1,β ,B2(λ)

This proves the theorem.

46

	Accountable Multi-Signatures with Constant Size Public Keys

