25,019 research outputs found
Optimizing the roles of unit and non-unit protection methods within DC microgrids
The characteristic behavior of physically compact, multiterminal dc networks under electrical fault conditions can produce demanding protection requirements. This represents a significant barrier to more widespread adoption of dc power distribution for microgrid applications. Protection schemes have been proposed within literature for such networks based around the use of non-unit protection methods. This paper shows however that there are severe limitations to the effectiveness of such schemes when employed for more complex microgrid network architectures. Even current differential schemes, which offer a more effective, though costly, protection solution, must be carefully designed to meet the design requirements resulting from the unique fault characteristics of dc microgrids. This paper presents a detailed analysis of dc microgrid behavior under fault conditions, illustrating the challenging protection requirements and demonstrating the shortcomings of non-unit approaches for these applications. Whilst the performance requirements for the effective operation of differential schemes in dc microgrids are shown to be stringent, the authors show how these may be met using COTS technologies. The culmination of this work is the proposal of a flexible protection scheme design framework for dc microgrid applications which enables the required levels of fault discrimination to be achieved whilst minimizing the associated installation costs
Plug-and-play Solvability of the Power Flow Equations for Interconnected DC Microgrids with Constant Power Loads
In this paper we study the DC power flow equations of a purely resistive DC
power grid which consists of interconnected DC microgrids with constant-power
loads. We present a condition on the power grid which guarantees the existence
of a solution to the power flow equations. In addition, we present a condition
for any microgrid in island mode which guarantees that the power grid remains
feasible upon interconnection. These conditions provide a method to determine
if a power grid remains feasible after the interconnection with a specific
microgrid with constant-power loads. Although the presented condition are more
conservative than existing conditions in the literature, its novelty lies in
its plug-and-play property. That is, the condition gives a restriction on the
to-be-connected microgrid, but does not impose more restrictions on the rest of
the power grid.Comment: 8 pages, 2 figures, submitted to IEEE Conference on Decision and
Control 201
Artificial Neural Network Based Fault Detection and Fault Location in the DC Microgrid
In DC microgrid, power electronic devices may suffer from over current during short circuit faults. Since DC bus systems cannot sustain high fault currents, suitable protection strategy in DC lines is indispensable. This paper presents a novel use of artificial neural network (ANN) for fault detection and fault location in a low voltage DC bus microgrid system. In the proposed scheme, the faults on DC bus can be fast detected and then isolated without de-energizing the entire system, hence achieving a more reliable DC microgrid. The neural network is trained based on the different short circuit faults in DC bus to ensure its validity. A microgrid with ring DC bus, which is segmented into overlapping nodes and linked with circuit breakers, is built in PSCAD/EMTDC to test the performance of the protection scheme
Power-Based Droop Control in DC Microgrids Enabling Seamless Disconnection From Upstream Grids
This paper proposes a local power-based droop controller for distributed energy resource converters in dc microgrids that are connected to upstream grids by grid-interface converters. During normal operation, the grid-interface converter imposes the microgrid bus voltage, and the proposed controller allows power flow regulation at distributed energy resource converters\u2019 output. On the other hand, during abnormal operation of the grid-interface converter (e.g., due to faults in the upstream grid), the proposed controller allows bus voltage regulation by droop control. Notably, the controller can autonomously convert from power flow control to droop control, without any need of bus voltage variation detection schemes or communication with other microgrid components, which enables seamless transitions between these two modes of operation. Considering distributed energy resource converters employing the power-based droop control, the operation modes of a single converter and of the whole microgrid are defined and investigated herein. The controller design is also introduced. Furthermore, the power sharing performance of this control approach is analyzed and compared with that of classical droop control. The experimental results from a laboratory-scale dc microgrid prototype are reported to show the final performances of the proposed power-based droop control
Nonlinear Control of a DC MicroGrid for the Integration of Photovoltaic Panels
New connection constraints for the power network (Grid Codes) require more
flexible and reliable systems, with robust solutions to cope with uncertainties
and intermittence from renewable energy sources (renewables), such as
photovoltaic arrays. The interconnection of such renewables with storage
systems through a Direct Current (DC) MicroGrid can fulfill these requirements.
A "Plug and Play" approach based on the "System of Systems" philosophy using
distributed control methodologies is developed in the present work. This
approach allows to interconnect a number of elements to a DC MicroGrid as power
sources like photovoltaic arrays, storage systems in different time scales like
batteries and supercapacitors, and loads like electric vehicles and the main AC
grid. The proposed scheme can easily be scalable to a much larger number of
elements.Comment: arXiv admin note: text overlap with arXiv:1607.0848
Analysis of an On-Line Stability Monitoring Approach for DC Microgrid Power Converters
An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters. In this approach, a perturbation is injected into a specific digital control loop of the converter and after measuring the loop gain, its crossover frequency and phase margin are continuously evaluated and monitored. The complete analytical derivation of the model, as well as detailed design aspects, are reported. In addition, the presence of multiple power converters connected to the same dc bus, all having the stability monitoring unit, is also investigated. An experimental microgrid prototype is implemented and considered to validate the theoretical analysis and simulation results, and to evaluate the effectiveness of the digital implementation of the technique for different control loops. The obtained results confirm the expected performance of the stability monitoring tool in steady-state and transient operating conditions. The proposed method can be extended to generic control loops in power converters operating in dc microgrids
P-resonant control for the neutral point of three phase inverter
In this project, a Proportional resonant (PR) current controller is proposed to
maintain a balanced neutral point for a three-phase four wire inverter, which can be
used in microgrid applications. The neutral-point circuit consists of a conventional
neutral leg and a split DC link. The neutral point is balanced with respect to the two
DC source terminals (as required, in neutral-point clamped three-level converters)
even when the neutral current is large so that the inverter can be connected to an
unbalanced load. The controller, designed by using the Proportional resonant control
techniques, which attain eliminate for the current flowing through the split
capacitors. This leads to very small variation of the neutral point from the mid-point
of the DC source, in spite of the possibly large neutral current. The simulation of
inverter circuit, neutral-point and P-resonant has been performed using
MATLAB/SIMULINK software. The simulation results confirm the validity of the
proposed method, which can be seen as a promising that ensure P-resonant control
suitable for microgrid applications
- …
