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Abstract: In this paper we study a power grid which consists of interconnected DC microgrids.
These microgrids are equipped with constant-power loads, and the lines in the grid are assumed
to be purely resistive. For this setup we present a sufficient condition which ensures that the
power flow equations are feasible. The novelty of this condition is its plug-and-play property: If
one would connect a new microgrid to the grid, there is a test for the new microgrid to guarantee
that the interconnection satisfies this condition, and hence is feasible.

Keywords: Smart grids, Optimal operation and control of power systems, Power systems
stability

1. INTRODUCTION

The increasing use and demand of electricity is pushing
our power grids to their limits. In addition, the incorpo-
ration of renewable energy sources is steadily introducing
more uncertainty into our energy sources. It has therefore
become a necessity to better understand the fundamental
limits of our power grid, as well as to come up with smart
ways to generate and distribute power.

To address these issues, there has been an increasing
interest in the study of microgrids. A microgrid is a small
power grid within a greater power grid. One of their key
features is their plug-and-play capability: a microgrid can
disconnect from the main grid to operate in island mode,
and reconnect whenever necessary. This allows for leveling
out the fluctuations of power generation and consumption,
as well as for a microgrid to disconnect when the main grid
suffers from a power outage.

There has been an increasing interest in DC (direct cur-
rent) microgrids. A large portion of the day-to-day energy
consumption is converted to DC. Together with the rise of
photo-voltaic cells and advances in battery storage, it is
sensible to implement DC power grids on a larger scale.

The matching of supply and demand of power in a power
grid is governed by its power flow equations. If these
equations have no solution, long-term voltage stability is
lost and phenomena such as blackouts and voltage collapse
occur (Chiang et al. [1990]). The introduction of constant-
power loads leads to non-linearities for which the power

� This work is supported by the NWO (Netherlands Organisation
for Scientific Research) project ’Energy management strategies for
interconnected smart microgrids’ within the DST-NWO Joint Re-
search Program on Smart Grids.

flow equations may not be solvable. Conditions which
guarantee their solvability are known, but are considered
conservative (Shivakumar and Chew [1974], Bolognani and
Zampieri [2015], Wang et al. [2016]).

There has been some research on the control of DC micro-
grids. A distributed control scheme was proposed in Zhao
and Dörfler [2015], and a plug-and-play control scheme was
proposed in Tucci et al. [2016], although neither paper con-
sider constant-power loads. To the best of our knowledge,
no theoretical advances have been made towards power
flow solvability where new sources and/or constant-power
loads are introduced, and the best available approach is to
recalculate known conditions for the altered power grid.

To this end, the goal of this paper is to formulate a
condition C for a DC power grid and a to-be-attached
microgrid, not assuming any control scheme, such that

(i) the condition C implies the power flow equations of
the power grid are solvable; and

(ii) there is a test T to guarantee that condition C also
holds for the interconnection of the power grid with
the microgrid, which makes the power flow equations
of the interconnection solvable.

The main advantage of this approach is that, when new
microgrids are attached to the power grid, reverification
of condition C for the interconnected power grid is not
necessary, which is therefore computationally cheaper. We
refer to this as the plug-and-play property.

The novelty of the presented approach is that it uses the
(block) Cholesky decomposition (BCD) as a theoretical
tool to analyze the power flow equations. Commonly,
whenever a new load is introduced to a power grid,
conditions for the feasibility of the power grid should be re-
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evaluated. The BCD allows for a sequential verification of
such a condition, and re-evaluation is not always necessary.

This paper is organized as follows. Section 2 contains
the mathematical preliminaries. Section 3 deals with the
feasibility of a DC power grid. In Section 4 we analyze
the interconnection of multiple microgrids and review the
block Cholesky decomposition. From this we derive a suffi-
cient condition for solvability of the power flow equations.
In Section 5 we consider the process of interconnecting
a microgrid to a power grid, and state our main result.
Section 6 concludes the paper.

2. PRELIMINARIES

All vectors and matrices in this paper are real-valued. We
denote a diagonal matrix by [d] := diag(d1, . . . , dn) for a
vector d. Note that [v]w = [w]v for any pair of vectors v, w.
Inequalities between matrices such as A > 0 and A ≥ 0 are
meant element-wise, and the same holds for vectors. The
notation 0 and 1 is used for all-zeros and all-ones vectors,
respectively. We let In denote the n× n identity matrix.

We say a matrix A is order-preserving if x < y implies
Ax < Ay, for all vectors x, y. It can be shown that a matrix
A is order-preserving if and only if A ≥ 0 and A1 > 0. Any
nonnegative invertible matrix is order-preserving, and its
inverse is known in the literature as a monotone matrix
(Berman and Plemmons [1979]). The sum and product of
two order-preserving matrices is again order-preserving.

We let it be understood that by a graph we mean an
undirected weighted graph with no self-loops. That is,
a graph Γ is the tuple (V, E ,w) with node set V =
{1, . . . , |V|}, edge set E ⊆ {{i, j} | i, j ∈ V, i �= j }, and a
map w : E → R>0 of edge weights.

For any Ṽ ⊆ V , the subgraph induced by Ṽ is the tuple

(Ṽ, Ẽ ,w) where Ẽ =
{
{i, j} ∈ E

∣∣∣ i, j ∈ Ṽ
}
.

We say that two nodes i, j ∈ V are path-connected with
respect to the graph Γ = (V, E ,w) if there exists a path
(v1, v2, . . . , vl) such that {vr, vr+1} ∈ E for r = 1, . . . , l − 1,
i = v1 and j = vl.

The node set V of a graph can be partitioned into
connected components such that two nodes are in the
same connected component if and only if they are path-
connected with respect to that graph.

We let the Laplacian matrix L(Γ) of the graph Γ =
(V, E ,w) be defined by L(Γ)ij = −w({i, j}) if {i, j} ∈ E ,
L(Γ)ij = 0 if i �= j and {i, j} �∈ E , and L(Γ)ii =
−∑

j �=i L(Γ)ij . Each graph is fully determined by its
Laplacian matrix.

A matrix A is an M-matrix if there exists a matrix B ≥ 0
such that A = sI−B where s ≥ ρ(B), the spectral norm of
B. It is invertible if s > ρ(B). The diagonal elements of an
M-matrix are nonnegative, and its off-diagonal elements
are nonpositive.

If an M-matrix is invertible, its inverse is nonnegative. Any
Schur complement of an invertible M-matrix is again an
invertible M-matrix. 1

1 See Berman and Plemmons [1979], Theorem 6.2.3 and Exercise
10.6.1.

3. FEASIBILITY OF DC POWER GRIDS

We consider a purely resistive DC power grid where(
V �
L V �

S

)�
> 0 and

(
I�
L I�

S

)�
denote the voltages po-

tentials and outgoing currents at the nodes, respectively.
These vectors are real-valued and partitioned according to
nodes being loads (L) or sources (S). The power injection
at each node is given by

(
PL

PS

)
=

[(
VL

VS

)](
IL
IS

)
,

where PL < 0 and PS > 0, indicating that load nodes
consume power, while source nodes supply power. We con-
sider the setting where each load is a constant-power load,
and therefore take PL ≡ −Pc, for Pc > 0 constant. The
voltage and current in a resistive circuit are related via the

weighted Laplacian (Kirchhoff) matrix Y =

(
YLL YLS

YSL YSS

)
,

where the edge weights corresponds to the admittance of
the lines between the nodes in the power grid. 2

The currents at the load nodes flowing into the power grid
are given by IL = YLLVL + YLSVS < 0. To satisfy the
power demand of the loads, the following equation should
be satisfied for some VL > 0, where Pc and VS are given:

[VL](YLLVL + YLSVS) + Pc = 0. (1)

Equation (1) is known as the (purely resistive) DC power
flow equation. Note that (1) does not directly depend
on YSS . To simplify notation, we introduce the following
definition.

Definition 1. We let (YLL, YLSVS , Pc) denote the power
flow equation (1) of the DC power grid described by Y ,
VS > 0 and Pc > 0. We say (YLL, YLSVS , Pc) is feasible if
there exists a vector VL > 0 such that (1) is satisfied.

Alternatively, Definition 1 states that (YLL, YLSVS , Pc) is
feasible if there exists an operating point for the system
such that the constant-power loads are satsified.

Since currents should flow from source to load, a power
grid cannot be feasible if some load is not path-connected
to a source. We therefore exclude such cases in this section
by assuming that every load is path-connected to a source.
It can be shown that YLL is therefore a so-called weakly
chained diagonally dominant M-matrix, which implies that
YLL is invertible.

The open-circuit voltages, defined as V ∗
L := −Y −1

LL YLSVS ,
correspond to the voltage potentials in the case where
there is no power demand, and therefore IL = 0. The
vector satisfies V ∗

L > 0 since every load node is assumed
to be path-connected to a source node.

As (1) is a quadratic equation in VL, it is not always
solvable. The next lemma rewrites (1) to simplify the
problem analysis.

Lemma 1. The equation (YLL, YLSVS , Pc) is feasible if and
only if there exists a vector x > 0 such that

[x]([V ∗
L ]YLL[V

∗
L ])

−1x+ Pc = x.

2 While we do not consider shunts in our power grids, all results
presented in this paper hold also for nodes with shunts, for which
one would use so-called grounded Laplacian matrices.
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2 While we do not consider shunts in our power grids, all results
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Proof. Multiply (1) by [Pc]([VL]YLL[VL])
−1 and de-

fine x = [V ∗
L ][VL]

−1Pc, which satisfies x > 0. Since
[Pc]

−1[VL]YLL[VL] is invertible, the implication follows.
The steps can be reversed to deduce equivalence. �

The vector x can be thought of as the power demand at a
load, scaled by the ratio between the open-circuit voltage
and the voltage potential at the load. Since Pc > 0 we
have Pc < x, a lower bound for x.

The matrix 1
4 [V

∗
L ]YLL[V

∗
L ] was introduced in Simpson-

Porco et al. [2016] as the stiffness matrix corresponding to
the loading characteristic of the power grid. In the same
paper, a sufficient condition for feasibility was derived:

Theorem 2. (Simpson-Porco et al. [2016]). The equation
(YLL, YLSVS , Pc) is feasible if

Y −1
LL [V ∗

L ]
−1PL < 1

4V
∗
L . (2)

Alternatively, the inequality (2) is represented in Simpson-
Porco et al. [2016] by the inequality∥∥∥

(
1
4 [V

∗
L ]YLL[V

∗
L ]
)−1

PL

∥∥∥
∞

< 1.

In the remainder of this paper we use Theorem 2 as a
sufficient condition for feasibility of a DC power grid.

4. MICROGRIDS WITH A FIXED
INTERCONNECTION TOPOLOGY

Throughout the rest of this paper we consider a DC power
grid consisting of multiple interconnected DC microgrids.
Our aim is to study the related power flow problem,
while respecting the topological structure of microgrids.
In particular, we phrase a sufficient condition C for the
solvability of (1). This condition is formulated in terms
of the individual microgrids, their interconnections, and
according to a hierarchical structure. The hierarchical
structure is precisely the order in which the microgrids are
connected to the power grid. To clarify: microgrids which
are lower in the hierarchy were added before the ones that
are higher in the hierarchy.

The presented approach only considers the case where
sources do not supply power to load nodes which are lower
in the hierarchy, and therefore leads to more conservative
conditions. On the other hand, the main feature of the
approach is that only considering power flow between
microgrids in a “specified direction” gives conditions for
which the introduction of a new microgrid does not alter
the conditions on the original power grid.

The main result of this paper is derived from Theorem 2
and relies on the block Cholesky decomposition (BCD) to
describe the hierarchical structure between the microgrids.
The BCD is reviewed in Section 4.2.

Throughout the rest of this section we focus on a fixed
topology of microgrids and study their feasibility. In Sec-
tion 5 we consider a dynamic topology of microgrids, by
which we mean that we consider the interconnection of an
islanded microgrid to a power grid.

4.1 System description

We consider a DC power grid as in Section 3, where again

Y =

(
YLL YLS

YSL YSS

)
. Our power grid is subdivided into k

2

1

5

4

3M1 M2

Fig. 1. An example of the interconnection of two micro-
grids M1, M2 satisfying Assumption 3. Source nodes
are represented by � and load nodes are represented
by ©.

microgrids. We number our microgrids and denote the i-
th microgrid by Mi. The numbering of the microgrids
represents the order in which the microgrids were attached
to the power grid, which induces a hierarchical structure
on the microgrids.

We let Γ = (V, E ,w) to be the graph represented by Y . The
nodes of a microgrid Mi induce a subgraph of Γ. Such a
subgraph is denoted by ΓMi .

In order to state the main result of this section, we require
the following assumption on the microgrids.

Assumption 3. For each microgrid Mi, each load node in
Mi satisfies at least one the following conditions:

i) The node is path-connected with respect to the graph
ΓMi to a source node in Mi;

ii) The node is path-connected with respect to the graph
Γ to a node in Mj with j < i.

These conditions can be interpreted as follows: Condition
3.i is equivalent to the condition that the node is path-
connected to a source node in Mi when the microgrid
operates in island mode. Condition 3.ii is equivalent to
the condition that every load node is path-connected to a
node lower in the hierarchy. Note that Assumption 3 only
requires that the first microgrid is able to operate in island
mode. In addition, note that we do not assume that the
power grid is connected.

Assumption 3 prevents the case where a microgrid is
connected to a power grid while some of its load nodes
are not path-connected to a source node; such a case can
never be feasible. More precisely, it states that for each
load node there exists a path (v1, . . . , vl) to a source node
such that it descends the hierarchy of microgrids; that is,
if vi ∈ Ms and vj ∈ Mt, then i < j implies s ≥ t.

Example 4. Figure 1 represents an interconnection of two
microgrids for which Assumption 3 holds: Nodes 1, 2, 4
and 5 satisfy 3.i, while nodes 3, 4 and 5 satisfy 3.ii. Note
that node 3 is not path-connected with respect to ΓM2

to
a source in M2. This implies that Assumption 3 would not
hold for node 3 if the numbering of M1 and M2 would be
interchanged. I.e., M2 cannot operate in island mode.

Assumption 3 implies the following Lemma.

Lemma 5. The matrix YLL is an invertible M-matrix.

Proof. It follows from Assumption 3 that every load node
is path-connected to a source node. This implies that
YLL is weakly chained diagonally dominant, and hence
an invertible M-matrix by Corollary 4 of Shivakumar and
Chew [1974]. �
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4.2 The block Cholesky decomposition

This section reviews the block Cholesky decomposition
(BCD) of a symmetric positive definite matrix. More
specifically, we consider the BCD of symmetric M-
matrices.

Consider a symmetric positive definite matrix A ∈ Rn×n,
along with a partition of the rows and columns of A into

k nonempty subsets. We obtain A =



a11 · · · a1k
...

...
ak1 · · · akk


 and

aij ∈ Rni×nj such that
k∑

i=1

ni = n. Note that aij = a�ji.

We define the matrices

Ai :=



a11 · · · a1i
...

...
ai1 · · · aii


 for i = 1, . . . , k;

αi := (ai1 · · · ai,i−1) for i = 2, . . . , k.

We have A = Ak and Ai =

(
Ai−1 α�

i
αi aii

)
for i = 2, . . . , k.

Let the matrices Ci, Di for i = 1, . . . , k be iteratively
defined by

C1 := In1
, Ci :=

(
Ci−1 0

αiA
−1
i−1Ci−1 Ini

)
,

D1 := A11, Di :=

(
Di−1 0
0 aii − αiA

−1
i−1α

�
i

)
.

It follows that Ai = CiDiC
�
i for i = 1, . . . , k.

Let C := Ck, D := Dk, then the block Cholesky decompo-
sition (BCD) of A is given by A = CDC�.

Note that

Ci =

(
Ci−1 0

αiA
−1
i−1Ci−1 Ini

)
=

(
Ci−1 0

αiC
−1�
i−1 D−1

i−1 Ini

)
;

C−1
i =

(
C−1

i−1 0
−αiA

−1
i−1 Ini

)
=

(
C−1

i−1 0

−αiC
−1�
i−1 D−1

i−1C
−1
i−1 Ini

)
,

from which we observe that only the diagonal blocks of D
have to be inverted to obtain the BCD of A.

By taking k = n we obtain the Cholesky decomposition
of A, and the BCD therefore generalizes the Cholesky
decomposition.

Suppose that A is an invertible M-matrix, then αi ≤ 0
and A−1

i ≥ 0. Since aii−αiA
−1
i−1α

�
i is a Schur complement

of the invertible M-matrix Ai, it is again an invertible M-
matrix, and therefore (aii − αiA

−1
i−1α

�
i )

−1 ≥ 0. Using this

fact, it can be shown by induction on i that D−1
i ≥ 0 and

C−1
i ≥ 0. Since both are invertible, it follows that D−1

i

and C−1
i are order-preserving for all i.

4.3 Iterative feasibility condition using the BCD

Continuing Section 4.1, we define A := YLL. We let C,D
such that A = CDC� is the BCD of A where each block
corresponds to a microgrid in the power grid. We will use
the notation for submatrices of A as in Section 4.2.

The intuition behind the BCD of YLL is not straight-
forward, but can be seen as follows. Each diagonal block

of D describes the conductances between load nodes in a
microgrid after all load nodes which are lower in the hi-
erarchy are eliminated by Kron reduction. Put differently,
for each block it is assumed that there is no current flow at
the load nodes which are lower in hierarchy, which means
that these nodes do not consume power.

The matrix C describes all weighted paths between load
nodes in distinct microgrids which ascend the hierarchy,
and is therefore (block) lower triangular. The off-diagonal
elements of C are nonpositive, while C has ones on its diag-
onal. The matrix CD roughly represents the conductances
between load nodes in a microgrid, under the assumption
that load nodes which are lower in hierarchy draw no
current, compensated by the conductances between load
nodes in microgrids which are lower in hierarchy and have
the same assumption. This compensation is based on paths
which descend the hierarchy, giving CD also a block lower
triangular structure.

Lemma 6. The load nodes k and l in Mi are path-
connected with respect to the graph induced by the load
nodes inM1, . . . ,Mi if and only if (aii−αiA

−1
i−1α

�
i )

−1
kl > 0.

Proof. The connected components of the graph induced
by the load nodes in M1, . . . ,Mi correspond to the ir-
reducible components of Ai. We can permute the rows
and columns of Ai such that Ai is block-diagonal. By
the Perron-Frobenius theorem for irreducible matrices, the
inverse of each block is positive. It follows that the (k, l)-
entry of A−1

i is positive if and only if k and l are path-
connected with respect to the graph. It can be shown
that (aii−αiA

−1
i−1α

�
i )

−1 is the principal submatrix of A−1
i

which corresponds to load nodes of Mi. �

The next lemma is the cornerstone of the main theorem in
this section, and the reason why we need Assumption 3.

Lemma 7. If Assumption 3 holds, then the vector C�V ∗
L

is positive.

Proof. Recall that

V ∗
L = −A−1YLSVS = −C−1�D−1C−1YLSVS ,

and therefore C�V ∗
L = −D−1C−1YLSVS . Note that VS >

0 and −YLS ≥ 0, and therefore −YLSVS ≥ 0. 3 Since A
is an invertible M-matrix, we have seen that C−1 ≥ 0 and
D−1 ≥ 0. This implies that −D−1C−1YLSVS ≥ 0.

We consider the rows of C�V ∗
L corresponding to the load

nodes in Mi, which are given by

−(aii − αiA
−1
i−1α

�
i )

−1
(
−αiA

−1
i−1 Ini

0
)
YLSVS . (3)

Consider a load node k in Mi.

If Assumption 3.i holds for k, then k is path-connect to a
node l in Mi with respect to the graph ΓMi (or coincides
with l) such that l shares an edge with a source node in
Mi. This implies that (aii − αiA

−1
i−1α

�
i )

−1
kl (−YLSVS)l > 0

by Lemma 6 and since (−YLSVS)l is positive if l shares an
edge with a source node.

If Assumption 3.ii holds for k, then k is path-connected to
a node l in Mj with respect to Γ such that j < i, and l is
the only node in the path not in Mi.

3 All load nodes share an edge with a generator node if and only if
−YLSVS > 0.
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4.2 The block Cholesky decomposition

This section reviews the block Cholesky decomposition
(BCD) of a symmetric positive definite matrix. More
specifically, we consider the BCD of symmetric M-
matrices.

Consider a symmetric positive definite matrix A ∈ Rn×n,
along with a partition of the rows and columns of A into

k nonempty subsets. We obtain A =



a11 · · · a1k
...

...
ak1 · · · akk


 and

aij ∈ Rni×nj such that
k∑

i=1

ni = n. Note that aij = a�ji.

We define the matrices

Ai :=



a11 · · · a1i
...

...
ai1 · · · aii


 for i = 1, . . . , k;

αi := (ai1 · · · ai,i−1) for i = 2, . . . , k.

We have A = Ak and Ai =

(
Ai−1 α�

i
αi aii

)
for i = 2, . . . , k.

Let the matrices Ci, Di for i = 1, . . . , k be iteratively
defined by

C1 := In1
, Ci :=

(
Ci−1 0

αiA
−1
i−1Ci−1 Ini

)
,

D1 := A11, Di :=

(
Di−1 0
0 aii − αiA

−1
i−1α

�
i

)
.

It follows that Ai = CiDiC
�
i for i = 1, . . . , k.

Let C := Ck, D := Dk, then the block Cholesky decompo-
sition (BCD) of A is given by A = CDC�.

Note that

Ci =

(
Ci−1 0

αiA
−1
i−1Ci−1 Ini

)
=

(
Ci−1 0

αiC
−1�
i−1 D−1

i−1 Ini

)
;

C−1
i =

(
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i−1 0
−αiA

−1
i−1 Ini

)
=

(
C−1

i−1 0

−αiC
−1�
i−1 D−1

i−1C
−1
i−1 Ini

)
,

from which we observe that only the diagonal blocks of D
have to be inverted to obtain the BCD of A.

By taking k = n we obtain the Cholesky decomposition
of A, and the BCD therefore generalizes the Cholesky
decomposition.

Suppose that A is an invertible M-matrix, then αi ≤ 0
and A−1

i ≥ 0. Since aii−αiA
−1
i−1α

�
i is a Schur complement

of the invertible M-matrix Ai, it is again an invertible M-
matrix, and therefore (aii − αiA

−1
i−1α

�
i )

−1 ≥ 0. Using this

fact, it can be shown by induction on i that D−1
i ≥ 0 and

C−1
i ≥ 0. Since both are invertible, it follows that D−1

i

and C−1
i are order-preserving for all i.

4.3 Iterative feasibility condition using the BCD

Continuing Section 4.1, we define A := YLL. We let C,D
such that A = CDC� is the BCD of A where each block
corresponds to a microgrid in the power grid. We will use
the notation for submatrices of A as in Section 4.2.

The intuition behind the BCD of YLL is not straight-
forward, but can be seen as follows. Each diagonal block

of D describes the conductances between load nodes in a
microgrid after all load nodes which are lower in the hi-
erarchy are eliminated by Kron reduction. Put differently,
for each block it is assumed that there is no current flow at
the load nodes which are lower in hierarchy, which means
that these nodes do not consume power.

The matrix C describes all weighted paths between load
nodes in distinct microgrids which ascend the hierarchy,
and is therefore (block) lower triangular. The off-diagonal
elements of C are nonpositive, while C has ones on its diag-
onal. The matrix CD roughly represents the conductances
between load nodes in a microgrid, under the assumption
that load nodes which are lower in hierarchy draw no
current, compensated by the conductances between load
nodes in microgrids which are lower in hierarchy and have
the same assumption. This compensation is based on paths
which descend the hierarchy, giving CD also a block lower
triangular structure.

Lemma 6. The load nodes k and l in Mi are path-
connected with respect to the graph induced by the load
nodes inM1, . . . ,Mi if and only if (aii−αiA

−1
i−1α

�
i )

−1
kl > 0.

Proof. The connected components of the graph induced
by the load nodes in M1, . . . ,Mi correspond to the ir-
reducible components of Ai. We can permute the rows
and columns of Ai such that Ai is block-diagonal. By
the Perron-Frobenius theorem for irreducible matrices, the
inverse of each block is positive. It follows that the (k, l)-
entry of A−1

i is positive if and only if k and l are path-
connected with respect to the graph. It can be shown
that (aii−αiA

−1
i−1α

�
i )

−1 is the principal submatrix of A−1
i

which corresponds to load nodes of Mi. �

The next lemma is the cornerstone of the main theorem in
this section, and the reason why we need Assumption 3.

Lemma 7. If Assumption 3 holds, then the vector C�V ∗
L

is positive.

Proof. Recall that

V ∗
L = −A−1YLSVS = −C−1�D−1C−1YLSVS ,

and therefore C�V ∗
L = −D−1C−1YLSVS . Note that VS >

0 and −YLS ≥ 0, and therefore −YLSVS ≥ 0. 3 Since A
is an invertible M-matrix, we have seen that C−1 ≥ 0 and
D−1 ≥ 0. This implies that −D−1C−1YLSVS ≥ 0.

We consider the rows of C�V ∗
L corresponding to the load

nodes in Mi, which are given by

−(aii − αiA
−1
i−1α

�
i )

−1
(
−αiA

−1
i−1 Ini

0
)
YLSVS . (3)

Consider a load node k in Mi.

If Assumption 3.i holds for k, then k is path-connect to a
node l in Mi with respect to the graph ΓMi (or coincides
with l) such that l shares an edge with a source node in
Mi. This implies that (aii − αiA

−1
i−1α

�
i )

−1
kl (−YLSVS)l > 0

by Lemma 6 and since (−YLSVS)l is positive if l shares an
edge with a source node.

If Assumption 3.ii holds for k, then k is path-connected to
a node l in Mj with respect to Γ such that j < i, and l is
the only node in the path not in Mi.

3 All load nodes share an edge with a generator node if and only if
−YLSVS > 0.
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Fig. 2. A schematic representation of inequality (4) and
(5) for three microgrids, where I∗

S := −YLSVS . Due
to the block lower triangular structure of C−1 and
D−1, the inequality concerning the first two block
rows is independent of the third block row of matrices
D−1, C−1 and vectors I∗

S , PL. This suggests that the
introduction of a fourth block row to D−1 and C−1

will therefore not compromise the inequality of the
first three block rows.

If l is a source node, then again

(aii − αiA
−1
i−1α

�
i )

−1
kl′ (−YLSVS)l′ > 0

where l′ is the node in the path which shares an edge with l.
If l is a load node, then, by applying induction on i in the
above, Assumption 3 implies that l is path-connected to
a load node m in Mj′ such that j′ ≤ j, which shares an
edge with a source node. Hence

(−(aii − αiA
−1
i−1α

�
i )

−1αi)kl(A
−1
i−1)lm(−YLSVS)m > 0

by Lemma 6. This implies that each row of (3) is posi-
tive. �

The vector C�V ∗
L is a lower bound for the open circuit

voltages V ∗
L and roughly represents the effect of the poten-

tials at the sources when there is no current flow at loads
and where currents only flow over paths which descend the
hierarchy.

The next theorem gives a sufficient condition for feasibility
which is more conservative then Theorem 2, but incorpo-
rates the topological structure of the microgrids.

Theorem 8. Let YLL = CDC�, the block Cholesky de-
composition such that the blocks (i.e. microgrids) satisfy
Assumption 3. If

D−1C−1[C�V ∗
L ]

−1PL < 1
4C

�V ∗
L , (4)

then Y −1
LL [V ∗

L ]
−1PL < 1

4V
∗
L and (YLL,−YLSVS , PL) is

feasible.

Proof. From Lemma 7 it follows that [C�V ∗
L ]

−1 is well-
defined and nonnegative. The matrix C−1� has ones on its
diagonal, and since C−1� is nonnegative, it follows that
C−1� − In ≥ 0. This means that In ≤ C−1� and we
therefore have C�V ∗

L ≤ C−1�C�V ∗
L = V ∗

L . This implies
that [C�V ∗

L ]
−1PL ≥ [V ∗

L ]
−1PL. The matrix D−1C−1 is

order-preserving and therefore,

D−1C−1[V ∗
L ]

−1PL ≤ D−1C−1[C�V ∗
L ]

−1PL < 1
4C

�V ∗
L .

Multiplication by the order-preserving matrix C−1� yields

C−1�D−1C−1[V ∗
L ]

−1PL = Y −1
LL [V ∗

L ]
−1PL < 1

4V
∗
L .

Theorem 2 implies that (YLL, YLSVS , PL) is feasible. �

The condition (4) in Theorem 8 is equivalent to

D−1C−1[D−1C−1I∗
S ]

−1PL < 1
4D

−1C−1I∗
S , (5)

where I∗
S := −YLSVS , the current from sources flowing to

neighboring loads. The block structure of (5) is schemati-
cally represented by Figure 2.

The introduction of a new microgrid gives rise to a new
block row of C−1 and D−1. Figure 2 illustrates a plug-and-
play condition such that, if a power grid satisfies (4), and a
microgrid satisfies a condition similar to the last block row
in Figure 2, then their interconnection satisfies (4) as well.
However, there are some technicalities which prevent us
from directly applying Theorem 8 to formulate a plug-and-
play condition for feasibility. This is investigated further
in Section 5.

5. MICROGRIDS WITH A DYNAMIC
INTERCONNECTION TOPOLOGY

In this section we relate the feasibility of a power grid to
an associated “virtual power grid”, such that Theorem 8
can be applied. From this, a plug-and-play condition C for
feasibility is obtained, along with a test T , which forms
the main result of this paper.

Example 9. Consider the power grid in Figure 1 where we
assume unit line conductances. We consider the microgrid
M1 in island mode and let Y represent its Laplacian

matrix. We have YLL =

(
1 0
0 1

)
. We proceed by connecting

M2 to M1 in the same fashion as in Figure 1, and let

Ŷ represent the Laplacian matrix of the interconnected
microgrids. It follows that

ŶLL =




2 0 −1 0 0
0 3 0 −1 −1
−1 0 1 0 0
0 −1 0 4 −1
0 −1 0 −1 3


 ,

where the partitioning of the matrix correspond to the two
microgrids. Note that the diagonal elements corresponding
to node 1 and node 2 have increased.

To formulate a plug-and-play condition as suggested in
Section 4.3, it is essential for Theorem 8 that the blocks
of the BCD of YLL remain unaltered when new microgrids
are attached to the power grid. However, from Example 9
we see that, when new lines are introduced, the diagonal

elements of the matrix ŶLL change with respect to YLL.

5.1 Virtual shunts and virtual power grids

To address the issue above, we increase the diagonal
elements of the Laplacian by temporarily introducing
shunts 1 at load nodes. These shunts are later replaced
(and potentially removed) when more lines are intercon-
nected to a load node. We refer to these shunts as virtual
shunts. This approach ensures that the diagonal elements
of the Laplacian matrix remain constant when new micro-
grids are attached.

Virtual shunts are not physically present in the power grid
and should be seen as placeholders for prospective lines.
We refer to a power grid with virtual shunts as a virtual
power grid. We refer to other power grids as physical power
grids, to prevent ambiguity. It should be understood that
a virtual power grid does not fully capture the behavior of

1 A shunt is a component at a node which extracts current propor-
tional to the voltage potential at the node; a resistive line connected
to ground.
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the associated physical power grid. However, the feasibility
of the two is related by the following lemma.

Lemma 10. Let A be an invertible M-matrix, E ≥ 0
diagonal, b ≥ 0 and c > 0 such that (A + E)−1b > 0.
Suppose

(A+ E)−1[(A+ E)−1b]−1c < 1
4 (A+ E)−1b, (6)

then also A−1[A−1b]−1c < 1
4A

−1b.

Proof. Note that A−1(A+ E) = I + A−1E ≥ I is order-
preserving, which implies that A−1b ≥ (A + E)−1b, and
so [A−1b]−1 ≤ [(A + E)−1b]−1. By multiplying (6) with
A−1(A+ E), we obtain

A−1[(A+ E)−1b]−1c < 1
4A

−1b.

The inequality [A−1b]−1 ≤ [(A + E)−1b]−1 implies that
A−1[A−1b]−1c < 1

4A
−1b, as A−1 is order-preserving. �

In the context of Theorem 2, Lemma 10 implies that if
(YLL + E, YLSVS , PL) with diagonal E ≥ 0 satisfies the
condition of Theorem 2, then so does (YLL, YLSVS , PL),
implying that both are feasible. The power grid corre-
sponding to (YLL + E, YLSVS , PL) is a virtual counter-
part to (YLL, YLSVS , PL), with E representing the virtual
shunts.

Note that virtual shunts are not needed for source nodes.
This follows directly from the observation that YSS does
not appear in (1). Hence, lines between sources can be
altered freely, without compromising feasibility.

It is essential that the virtual shunts are chosen properly.
Choosing E large leads to more conservative conditions,
whereas choosing E small restricts the possible intercon-
nections with potential microgrids.

However, from a practical point of view, it is reasonable
to assume that the conductances of prospective lines are
known a priori. For example, some lines may already exist
but are not in use. Also, there might be limitations on the
number of lines a node can connect with, which would give
an upper bound for the virtual shunt.

5.2 Main Theorem: Plug-and-play solvability

In this section we present the main result of the paper.
The main line of this section is as follows.

We consider a power grid and define a virtual counterpart
in the sense of Section 5.1. We define a BCD of the lines
of the loads in the virtual power grid. We assume that the
BCD satisfies the conditions for Theorem 8. This implies
that both the power grid and its virtual counterpart are
feasible, by Lemma 10.

We proceed by introducing a microgrid and again define
a virtual counterpart. We interconnect both virtual grids,
assuming that the physical interconnection satisfies As-
sumption 3 and does not exceed the virtual shunts. We
extend the BCD of the virtual power grid to the virtual
interconnection and use this to state the main theorem.

The main theorem gives a sufficient condition such that
this interconnected virtual power grid is feasible. More-
over, the theorem states that the physical interconnection
of the power grid and the microgrid is therefore also
feasible, by Lemma 10.

Consider a DC power grid described by the Laplacian

matrix

(
YL1L1 YL1S1

YS1L1 YS1S1

)
, together with the virtual shunts

EL1
and load voltages VL1

. Let PL1
be the power demand

at the load nodes and V ′
L1

:= −(YL1L1
+ EL1

)−1YL1S1
VS1

the virtual open-circuit voltages, where VS1
are the source

voltages. The vector V ′
L1

is a lower bound for the open-
circuit voltages of the physical power grid.

Let C,D such that CDC� = YL1L1+EL1 is a BCD, where
the blocks are such that they satisfy Assumption 3.

Assumption 11. The virtual power grid satisfies the con-
dition C, which is given by

D−1C−1[C�V ′
L1
]−1PL1 < 1

4C
�V ′

L1
.

Assumption 11 implies that (YL1L1
+ EL1

, YL1S1
VS1

, PL1
)

is feasible by Theorem 8. It follows by Lemma 10 that
(YL1L1

, YL1S1
VS1

, PL1
), the physical counterpart, is feasi-

ble as well.

In addition, consider a microgrid described by the Lapla-

cian matrix

(
YL2L2

YL2S2

YS2L2
YS2S2

)
, together with the virtual

shunts EL2
and load voltages VL2

. Let PL2
be the power

demand at the load nodes.

Let the physical interconnection of the power grid and the
microgrid be given by the Laplacian matrix


YL1L1

+ÊL1
YL1L2

YL1S1
YL1S2

YL2L1
YL2L2

+ÊL2
YL2S1

YL2S2

YS1L1
YS1L2

YS1S1
+ÊS1

YS1S2

YS2L1
YS2L2

YS2S1
YS2S2

+ÊS2


 ,

where ÊL1
, ÊL2

, ÊS1
, ÊS2

are defined as follows:

ÊL1
:= −[YL1L2

1 + YL1S2
1]; ÊS1

:= −[YS1L2
1 + YS1S2

1];

ÊL2
:= −[YL2L1

1 + YL2S1
1]; ÊS2

:= −[YS2L1
1 + YS2S1

1].

We make the following assumption on the interconnection.

Assumption 12. The interconnection of the power grid

and the microgrid is such that ÊL1
≤ EL1

, ÊL2
≤ EL2

and Assumption 3 holds.

The bounds on ÊL1
and ÊL2

imply that the virtual
interconnection of both virtual grids does not exceed the
virtual shunts. This will allow us to use Lemma 10 in
Theorem 13.

Let C̃, D̃ such that

C̃D̃C̃� =

(
YL1L1

+ EL1
YL1L2

YL2L1
YL2L2

+ EL2

)

is a BCD. From Section 4.2 it follows that

C̃−1 =

(
C−1 0

−YL2L1
(CDC�)−1 In

)
;

D̃−1 =

(
D−1 0
0 R−1

)
,

where we define

R := YL2L2
+ EL2

− YL2L1
(CDC�)−1YL1L2

.

Define V ′
L := −(C̃D̃C̃�)−1

(
YL1S1

YL1S2

YL2S1
YL2S2

)(
VS1

VS2

)
, which

is a lower bound for the open-circuit voltages of the
interconnected power grid.
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the associated physical power grid. However, the feasibility
of the two is related by the following lemma.

Lemma 10. Let A be an invertible M-matrix, E ≥ 0
diagonal, b ≥ 0 and c > 0 such that (A + E)−1b > 0.
Suppose

(A+ E)−1[(A+ E)−1b]−1c < 1
4 (A+ E)−1b, (6)

then also A−1[A−1b]−1c < 1
4A

−1b.

Proof. Note that A−1(A+ E) = I + A−1E ≥ I is order-
preserving, which implies that A−1b ≥ (A + E)−1b, and
so [A−1b]−1 ≤ [(A + E)−1b]−1. By multiplying (6) with
A−1(A+ E), we obtain

A−1[(A+ E)−1b]−1c < 1
4A

−1b.

The inequality [A−1b]−1 ≤ [(A + E)−1b]−1 implies that
A−1[A−1b]−1c < 1

4A
−1b, as A−1 is order-preserving. �

In the context of Theorem 2, Lemma 10 implies that if
(YLL + E, YLSVS , PL) with diagonal E ≥ 0 satisfies the
condition of Theorem 2, then so does (YLL, YLSVS , PL),
implying that both are feasible. The power grid corre-
sponding to (YLL + E, YLSVS , PL) is a virtual counter-
part to (YLL, YLSVS , PL), with E representing the virtual
shunts.

Note that virtual shunts are not needed for source nodes.
This follows directly from the observation that YSS does
not appear in (1). Hence, lines between sources can be
altered freely, without compromising feasibility.

It is essential that the virtual shunts are chosen properly.
Choosing E large leads to more conservative conditions,
whereas choosing E small restricts the possible intercon-
nections with potential microgrids.

However, from a practical point of view, it is reasonable
to assume that the conductances of prospective lines are
known a priori. For example, some lines may already exist
but are not in use. Also, there might be limitations on the
number of lines a node can connect with, which would give
an upper bound for the virtual shunt.

5.2 Main Theorem: Plug-and-play solvability

In this section we present the main result of the paper.
The main line of this section is as follows.

We consider a power grid and define a virtual counterpart
in the sense of Section 5.1. We define a BCD of the lines
of the loads in the virtual power grid. We assume that the
BCD satisfies the conditions for Theorem 8. This implies
that both the power grid and its virtual counterpart are
feasible, by Lemma 10.

We proceed by introducing a microgrid and again define
a virtual counterpart. We interconnect both virtual grids,
assuming that the physical interconnection satisfies As-
sumption 3 and does not exceed the virtual shunts. We
extend the BCD of the virtual power grid to the virtual
interconnection and use this to state the main theorem.

The main theorem gives a sufficient condition such that
this interconnected virtual power grid is feasible. More-
over, the theorem states that the physical interconnection
of the power grid and the microgrid is therefore also
feasible, by Lemma 10.

Consider a DC power grid described by the Laplacian

matrix

(
YL1L1 YL1S1

YS1L1 YS1S1

)
, together with the virtual shunts

EL1
and load voltages VL1

. Let PL1
be the power demand

at the load nodes and V ′
L1

:= −(YL1L1
+ EL1

)−1YL1S1
VS1

the virtual open-circuit voltages, where VS1
are the source

voltages. The vector V ′
L1

is a lower bound for the open-
circuit voltages of the physical power grid.

Let C,D such that CDC� = YL1L1+EL1 is a BCD, where
the blocks are such that they satisfy Assumption 3.

Assumption 11. The virtual power grid satisfies the con-
dition C, which is given by

D−1C−1[C�V ′
L1
]−1PL1 < 1

4C
�V ′

L1
.

Assumption 11 implies that (YL1L1
+ EL1

, YL1S1
VS1

, PL1
)

is feasible by Theorem 8. It follows by Lemma 10 that
(YL1L1

, YL1S1
VS1

, PL1
), the physical counterpart, is feasi-

ble as well.

In addition, consider a microgrid described by the Lapla-

cian matrix

(
YL2L2

YL2S2

YS2L2
YS2S2

)
, together with the virtual

shunts EL2
and load voltages VL2

. Let PL2
be the power

demand at the load nodes.

Let the physical interconnection of the power grid and the
microgrid be given by the Laplacian matrix


YL1L1

+ÊL1
YL1L2

YL1S1
YL1S2

YL2L1
YL2L2

+ÊL2
YL2S1

YL2S2

YS1L1
YS1L2

YS1S1
+ÊS1

YS1S2

YS2L1
YS2L2

YS2S1
YS2S2

+ÊS2


 ,

where ÊL1
, ÊL2

, ÊS1
, ÊS2

are defined as follows:

ÊL1
:= −[YL1L2

1 + YL1S2
1]; ÊS1

:= −[YS1L2
1 + YS1S2

1];

ÊL2
:= −[YL2L1

1 + YL2S1
1]; ÊS2

:= −[YS2L1
1 + YS2S1

1].

We make the following assumption on the interconnection.

Assumption 12. The interconnection of the power grid

and the microgrid is such that ÊL1
≤ EL1

, ÊL2
≤ EL2

and Assumption 3 holds.

The bounds on ÊL1
and ÊL2

imply that the virtual
interconnection of both virtual grids does not exceed the
virtual shunts. This will allow us to use Lemma 10 in
Theorem 13.

Let C̃, D̃ such that

C̃D̃C̃� =

(
YL1L1

+ EL1
YL1L2

YL2L1
YL2L2

+ EL2

)

is a BCD. From Section 4.2 it follows that

C̃−1 =

(
C−1 0

−YL2L1
(CDC�)−1 In

)
;

D̃−1 =

(
D−1 0
0 R−1

)
,

where we define

R := YL2L2
+ EL2

− YL2L1
(CDC�)−1YL1L2

.

Define V ′
L := −(C̃D̃C̃�)−1

(
YL1S1

YL1S2

YL2S1
YL2S2

)(
VS1

VS2

)
, which

is a lower bound for the open-circuit voltages of the
interconnected power grid.

Finally, let (C̃�V ′
L)L1

denote the entries of C̃�V ′
L corre-

sponding to the load nodes of the original power grid, and
similar for (C̃�V ′

L)L2 and the microgrid.

Theorem 13. (Plug-and-Play Solvability). Suppose that As-
sumptions 11 and 12 are satisfied. If the test T , given by

−R−1YL2L1(CDC�)−1[(C̃�V ′
L)L1 ]

−1PL1

+R−1[(C̃�V ′
L)L2

]−1PL2
< 1

4 (C̃
�V ′

L)L2
, (7)

is satisfied, then the condition C, given by

D̃−1C̃−1[C̃�V ′
L]

−1
(

PL1

PL2

)
< 1

4 C̃
�V ′

L (8)

holds for the virtual interconnected power grid. Therefore
the interconnection of the power grid and the microgrid is
feasible.

Proof. Due to the block triangular structure of C̃, the
rows of (8) corresponding to the virtual power grid are
given by

D−1C−1[(C̃�V ′
L)L1 ]

−1PL1 < 1
4 (C̃

�V ′
L)L1 . (9)

For the same reason we have

(C̃�V ′
L)L1 = −D−1C−1(YL1S1VS1 + YL1S2VS2)

≥ −D−1C−1YL1S1VS1 = C�V ′
L1
,

which implies [(C̃�V ′
L)L1 ]

−1 ≤ [C�V ′
L1
]−1. Assumption 11

implies that

D−1C−1[(C̃�V ′
L)L1 ]

−1PL1 ≤ D−1C−1[C�V ′
L1
]−1PL1

< 1
4C

�V ′
L1

≤ 1
4 (C̃

�V ′
L)L1

.

Therefore (9) is satisfied.

Note that (7) is equivalent to the rows of (8) corresponding
to the virtual microgrid. Hence, if (7) holds, then so does
(8).

If (8) is satisfied, then by Theorem 8 the virtual intercon-
nection

(
(

YL1L1
+EL1

YL1L2

YL2L1
YL2L2

+EL2

)
,
(

YL1S1
YL1S2

YL2S1
YL2S2

)(
VS1

VS2

)
,
(

PL1

PL2

)
)

is feasible. Since ÊL1
≤ EL1

and ÊL2
≤ EL2

, we may use
Lemma 10 to conclude that the physical interconnection

(

(
YL1L1

+ÊL1
YL1L2

YL2L1
YL2L2

+ÊL2

)
,
(

YL1S1
YL1S2

YL2S1
YL2S2

)(
VS1

VS2

)
,
(

PL1

PL2

)
)

is feasible as well. �

Note that Assumption 11 and (8) are of the same form.
Hence, microgrids can be attached to a power grid in
an iterative fashion by using Theorem 13 to guarantee
feasibility. This provides a method to determine if a power
grid remains feasible after connecting a specific microgrid.

A numerical example of this process was omitted but is
available in the preprint of this paper Jeeninga et al. [2019].

6. CONCLUSION

In this paper we studied the interconnection of purely
resistive DC microgrids with constant-power loads. We
have presented a sufficient condition C for the feasibility of
a DC power grid. In addition, we have presented a test T
for the interconnection of a microgrid such that condition
C also holds for their interconnection. This establishes a
method to determine if a power grid remains feasible after
connecting a specific microgrid.
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(2015). On existence and stability of equilibria of linear
time-invariant systems with constant power loads. IEEE
Trans. Circuits Syst. I, Reg. Papers, 63(1), 114–121.

Berman, A. and Plemmons, R. (1979). Nonnegative
Matrices in the Mathematical Sciences. Academic Press,
New York.

Bolognani, S. and Zampieri, S. (2015). On the existence
and linear approximation of the power flow solution in
power distribution networks. IEEE Trans. Power Syst.,
31(1), 163–172.

Chiang, H.D., Dobson, I., Thomas, R.J., Thorp, J.S., and
Fekih-Ahmed, L. (1990). On voltage collapse in electric
power systems. IEEE Trans. Power Syst., 5(2), 601–611.

Dörfler, F., Simpson-Porco, J.W., and Bullo, F. (2018).
Electrical networks and algebraic graph theory: Models,
properties, and applications. Proceedings of the IEEE,
106(5), 977–1005.

Godsil, C. and Royle, G. (2001). Algebraic graph theory.
Springer, New York.

Jeeninga, M., Persis, C.D., and van der Schaft, A.J. (2019).
Plug-and-play solvability of the power flow equations for
interconnected dc microgrids with constant power loads.
arXiv preprint arXiv:1904.08840.

Matveev, A.S., Machado, J.E., Ortega, R., Schiffer, J.,
and Pyrkin, A. (2018). On the existence and long-
term stability of voltage equilibria in power systems with
constant power loads. arXiv preprint arXiv:1809.08127.

Rantzer, A. and Bernhardsson, B. (2014). Control of
convex-monotone systems. In 53rd IEEE Conference
on Decision and Control, 2378–2383. IEEE.

Shivakumar, P. and Chew, K.H. (1974). A sufficient
condition for nonvanishing of determinants. Proceedings
of the American mathematical society, 63–66.

Simpson-Porco, J.W. (2017). Lossy DC power flow. IEEE
Trans. Power Syst., 33(3), 2477–2485.

Simpson-Porco, J.W., Dörfler, F., and Bullo, F. (2015).
On resistive networks of constant-power devices. IEEE
Trans. Circuits Syst., II, Exp. Briefs, 62(8), 811–815.

Simpson-Porco, J.W., Dörfler, F., and Bullo, F. (2016).
Voltage collapse in complex power grids. Nature com-
munications, 7, 10790.

Tucci, M., Riverso, S., Vasquez, J.C., Guerrero, J.M., and
Ferrari-Trecate, G. (2016). A decentralized scalable
approach to voltage control of DC islanded microgrids.
IEEE Trans. Control Syst. Technol., 24(6), 1965–1979.

Wang, C., Bernstein, A., Le Boudec, J.Y., and Paolone, M.
(2016). Explicit conditions on existence and uniqueness
of load-flow solutions in distribution networks. IEEE
Trans. Smart Grid, 9(2), 953–962.

Yu, S., Nguyen, H.D., and Turitsyn, K.S. (2015). Simple
certificate of solvability of power flow equations for
distribution systems. In 2015 IEEE Power & Energy
Society General Meeting, 1–5. IEEE.

Zhao, J. and Dörfler, F. (2015). Distributed control and
optimization in dc microgrids. Automatica, 61, 18–26.


