8,564 research outputs found

    Linear Optimal Power Flow Using Cycle Flows

    Full text link
    Linear optimal power flow (LOPF) algorithms use a linearization of the alternating current (AC) load flow equations to optimize generator dispatch in a network subject to the loading constraints of the network branches. Common algorithms use the voltage angles at the buses as optimization variables, but alternatives can be computationally advantageous. In this article we provide a review of existing methods and describe a new formulation that expresses the loading constraints directly in terms of the flows themselves, using a decomposition of the network graph into a spanning tree and closed cycles. We provide a comprehensive study of the computational performance of the various formulations, in settings that include computationally challenging applications such as multi-period LOPF with storage dispatch and generation capacity expansion. We show that the new formulation of the LOPF solves up to 7 times faster than the angle formulation using a commercial linear programming solver, while another existing cycle-based formulation solves up to 20 times faster, with an average speed-up of factor 3 for the standard networks considered here. If generation capacities are also optimized, the average speed-up rises to a factor of 12, reaching up to factor 213 in a particular instance. The speed-up is largest for networks with many buses and decentral generators throughout the network, which is highly relevant given the rise of distributed renewable generation and the computational challenge of operation and planning in such networks.Comment: 11 pages, 5 figures; version 2 includes results for generation capacity optimization; version 3 is the final accepted journal versio

    Optimization with Sparsity-Inducing Penalties

    Get PDF
    Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate non-smooth norms. The goal of this paper is to present from a general perspective optimization tools and techniques dedicated to such sparsity-inducing penalties. We cover proximal methods, block-coordinate descent, reweighted 2\ell_2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provide an extensive set of experiments to compare various algorithms from a computational point of view

    Optimistic Robust Optimization With Applications To Machine Learning

    Get PDF
    Robust Optimization has traditionally taken a pessimistic, or worst-case viewpoint of uncertainty which is motivated by a desire to find sets of optimal policies that maintain feasibility under a variety of operating conditions. In this paper, we explore an optimistic, or best-case view of uncertainty and show that it can be a fruitful approach. We show that these techniques can be used to address a wide variety of problems. First, we apply our methods in the context of robust linear programming, providing a method for reducing conservatism in intuitive ways that encode economically realistic modeling assumptions. Second, we look at problems in machine learning and find that this approach is strongly connected to the existing literature. Specifically, we provide a new interpretation for popular sparsity inducing non-convex regularization schemes. Additionally, we show that successful approaches for dealing with outliers and noise can be interpreted as optimistic robust optimization problems. Although many of the problems resulting from our approach are non-convex, we find that DCA or DCA-like optimization approaches can be intuitive and efficient

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page
    corecore