52,445 research outputs found
Electronic properties of very thin native SiO2/a-Si:H interfaces and their comparison with those prepared by both dielectric barrier discharge oxidation at atmospheric pressure and by chemical oxidation
The contribution deals with electronic properties of thin oxide/amorphous hydrogenated silicon (a-Si:H) measured by capacitance-voltage (C-V) and charge version of deep level transient spectroscopy (Q-DLTS). The interest was focused on the studies of the interface properties of very thin dielectrics formed by dielectric barrier discharge (DBD) or natively on the a-Si:H layer. These properties were compared with those of oxide layers prepared by chemical oxidation in HNO3. The DBD was used for the preparation of a very thin SiO2 layer on a-Si:H for the first time to our knowledge. Preliminary electrical measurements confirmed that a very low interface states density was detected in the case of the native oxide/a-Si:H and DBD oxide/a-Si:H
Thyroid Hormone as a Method of Reducing Damage to Donor Hearts after Circulatory Arrest
There is a chronic lack of donor hearts to meet the need for heart transplant both in the US and worldwide. Further, the use of available hearts is limited by the short period between collection and implantation during which the heart can be safely preserved ex vivo. Using mid-thermic Langendorff machine perfusion, we have been able to preserve the metabolic function of a healthy heart for up to 8 hours, twice the limit for current static cold storage. We have also been able to preserve the metabolic function of a damaged DCD Heart collected 30 minutes after cardiac arrest for a period of 8 hours. We further investigated whether it was possible to improve the preservation of DCD heart using treatment with 10 μM Triiodothyronine to stimulate the tissue metabolism and we did find a reduction in damage markers in the treated DCD hearts as compared to the untreated group
Scintillating double beta decay bolometers
We present the results obtained in the development of scintillating Double
Beta Decay bolometers. Several Mo and Cd based crystals were tested with the
bolometric technique. The scintillation light was measured through a second
independent bolometer. A 140 g CdWO_4 crystal was run in a 417 h live time
measurement. Thanks to the scintillation light, the alpha background is easily
discriminated resulting in zero counts above the 2615 keV gamma line of
Thallium 208. These results, combined with an extremely easy light detector
operation, represent the first tangible proof demonstrating the feasibility of
this kind of technique.Comment: 15 pages, 8 figure
Transcription activator like effector (TALE)-directed piggyBac transposition in human cells.
Insertional therapies have shown great potential for combating genetic disease and safer methods would undoubtedly broaden the variety of possible illness that can be treated. A major challenge that remains is reducing the risk of insertional mutagenesis due to random insertion by both viral and non-viral vectors. Targetable nucleases are capable of inducing double-stranded breaks to enhance homologous recombination for the introduction of transgenes at specific sequences. However, off-target DNA cleavages at unknown sites can lead to mutations that are difficult to detect. Alternatively, the piggyBac transposase is able perform all of the steps required for integration; therefore, cells confirmed to contain a single copy of a targeted transposon, for which its location is known, are likely to be devoid of aberrant genomic modifications. We aimed to retarget transposon insertions by comparing a series of novel hyperactive piggyBac constructs tethered to a custom transcription activator like effector DNA-binding domain designed to bind the first intron of the human CCR5 gene. Multiple targeting strategies were evaluated using combinations of both plasmid-DNA and transposase-protein relocalization to the target sequence. We demonstrated user-defined directed transposition to the CCR5 genomic safe harbor and isolated single-copy clones harboring targeted integrations
Degradation of organic compounds and production of activated species in Dielectric Barrier Discharges and Glidarc reactors
Major sterilization mechanisms are related to atoms and radicals, charged
parti-cles, excited molecules, ozone, and UV radiation. The ROS (Reactive
Oxygen Species) are well known as evildoers. These species are easily created
in ambient air and water and they live long enough to reach the cell and attack
the organic matter. Test molecules conversion in dry and wet air is studied
using Dielectric Barrier Discharge (DBD) and Gliding Arc Reactors (GAR). The
effects of tem-perature and energy deposition into the media on the active
species production and then on the organic compounds degradation are presented
for two non thermal plasma reactors: DBD and GAR. Main production species
investigated are OH, O3, NOx, CO and CxHyOz by-products. It is shown from
experiment analysis that the reactive species production is quite different
from one reactor to another. GAR and pulsed DBD are two chemical processing
ways in which the temperature of heavy species in ionized gas is determinant.
By reviewing the species production obtained from both reactors, a discussion
is open about plasma decontamination.Comment: NATO-AdvancedStudy Institute on Plasma Assisted Decontamination of
biological and Chemical Agents, Cesme-Izmir : Turquie (2007
The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains
The ATP-dependent chromatin-remodelling enzyme Chd1 is a 168-kDa protein consisting of a double chromodomain, Snf2-related ATPase domain, and a C-terminal DNA-binding domain. Here, we show the DNA-binding domain is required for Saccharomyces cerevisiae Chd1 to bind and remodel nucleosomes. The crystal structure of this domain reveals the presence of structural homology to SANT and SLIDE domains previously identified in ISWI remodelling enzymes. The presence of these domains in ISWI and Chd1 chromatin-remodelling enzymes may provide a means of efficiently harnessing the action of the Snf2-related ATPase domain for the purpose of nucleosome spacing and provide an explanation for partial redundancy between these proteins. Site directed mutagenesis was used to identify residues important for DNA binding and generate a model describing the interaction of this domain with DNA. Through inclusion of Chd1 sequences in homology searches SLIDE domains were identified in CHD6–9 proteins. Point mutations to conserved amino acids within the human CHD7 SLIDE domain have been identified in patients with CHARGE syndrome
- …
