607 research outputs found

    Design and evaluation of a DASH-compliant second screen video player for live events in mobile scenarios

    Get PDF
    The huge diffusion of mobile devices is rapidly changing the way multimedia content is consumed. Mobile devices are often used as a second screen, providing complementary information on the content shown on the primary screen, as different camera angles in case of a sport event. The introduction of multiple camera angles poses many challenges with respect to guaranteeing a high Quality of Experience to the end user, especially when the live aspect, different devices and highly variable network conditions typical of mobile environments come into play. Due to the ability of HTTP Adaptive Streaming (HAS) protocols to dynamically adapt to bandwidth fluctuations, they are especially suited for the delivery of multimedia content in mobile environments. In HAS, each video is temporally segmented and stored in different quality levels. Rate adaptation heuristics, deployed at the video player, allow the most appropriate quality level to be dynamically requested, based on the current network conditions. Recently, a standardized solution has been proposed by the MPEG consortium, called Dynamic Adaptive Streaming over HTTP (DASH). We present in this paper a DASH-compliant iOS video player designed to support research on rate adaptation heuristics for live second screen scenarios in mobile environments. The video player allows to monitor the battery consumption and CPU usage of the mobile device and to provide this information to the heuristic. Live and Video-on-Demand streaming scenarios and real-time multi-video switching are supported as well. Quantitative results based on real 3G traces are reported on how the developed prototype has been used to benchmark two existing heuristics and to analyse the main aspects affecting battery lifetime in mobile video streaming

    Streaming Video over HTTP with Consistent Quality

    Full text link
    In conventional HTTP-based adaptive streaming (HAS), a video source is encoded at multiple levels of constant bitrate representations, and a client makes its representation selections according to the measured network bandwidth. While greatly simplifying adaptation to the varying network conditions, this strategy is not the best for optimizing the video quality experienced by end users. Quality fluctuation can be reduced if the natural variability of video content is taken into consideration. In this work, we study the design of a client rate adaptation algorithm to yield consistent video quality. We assume that clients have visibility into incoming video within a finite horizon. We also take advantage of the client-side video buffer, by using it as a breathing room for not only network bandwidth variability, but also video bitrate variability. The challenge, however, lies in how to balance these two variabilities to yield consistent video quality without risking a buffer underrun. We propose an optimization solution that uses an online algorithm to adapt the video bitrate step-by-step, while applying dynamic programming at each step. We incorporate our solution into PANDA -- a practical rate adaptation algorithm designed for HAS deployment at scale.Comment: Refined version submitted to ACM Multimedia Systems Conference (MMSys), 201
    • …
    corecore