8,161 research outputs found

    Dynamics of the giant planets of the solar system in the gaseous proto-planetary disk and relationship to the current orbital architecture

    Get PDF
    We study the orbital evolution of the 4 giant planets of our solar system in a gas disk. Our investigation extends the previous works by Masset and Snellgrove (2001) and Morbidelli and Crida (2007, MC07), which focussed on the dynamics of the Jupiter-Saturn system. The only systems that we found to reach a steady state are those in which the planets are locked in a quadruple mean motion resonance (i.e. each planet is in resonance with its neighbor). In total we found 6 such configurations. For the gas disk parameters found in MC07, these configurations are characterized by a negligible migration rate. After the disappearance of the gas, and in absence of planetesimals, only two of these six configurations (the least compact ones) are stable for a time of hundreds of millions of years or more. The others become unstable on a timescale of a few My. Our preliminary simulations show that, when a planetesimal disk is added beyond the orbit of the outermost planet, the planets can evolve from the most stable of these configurations to their current orbits in a fashion qualitatively similar to that described in Tsiganis et al. (2005).Comment: The Astronomical Journal (17/07/2007) in pres

    Transient growth in stable collisionless plasma

    Full text link
    The first kinetic study of transient growth for a collisionless homogeneous Maxwellian plasma in a uniform magnetic field is presented. A system which is linearly stable may display transient growth if the linear operator describing its evolution is non-normal, so that its eigenvectors are non-orthogonal. In order to include plasma kinetic effects a Landau fluid model is employed. The linear operator of the model is shown to be non-normal and the results suggest that the nonnormality of a collisionless plasma is intrinsically related to its kinetic nature, with the transient growth being more accentuated for smaller scales and higher plasma beta. The results based on linear spectral theory have been confirmed with nonlinear simulations.Comment: accepted as a Letter in Physics of Plasma

    Solar wind turbulent spectrum at plasma kinetic scales

    Full text link
    The description of the turbulent spectrum of magnetic fluctuations in the solar wind in the kinetic range of scales is not yet completely established. Here, we perform a statistical study of 100 spectra measured by the STAFF instrument on the Cluster mission, which allows to resolve turbulent fluctuations from ion scales down to a fraction of electron scales, i.e. from 102\sim 10^2 km to 300\sim 300 m. We show that for kρe[0.03,3]k_{\perp}\rho_e \in[0.03,3] (that corresponds approximately to the frequency in the spacecraft frame f[3,300]f\in [3,300] Hz), all the observed spectra can be described by a general law E(k)k8/3exp(kρe)E(k_\perp)\propto k_\perp^{-8/3}\exp{(-k_\perp \rho_e)}, where kk_{\perp} is the wave-vector component normal to the background magnetic field and ρe\rho_e the electron Larmor radius. This exponential tail found in the solar wind seems compatible with the Landau damping of magnetic fluctuations onto electrons.Comment: published in APJ, 15 of November 2012 (with reduced "Discussion" section

    Gravitational Clustering: A Simple, Robust and Adaptive Approach for Distributed Networks

    Full text link
    Distributed signal processing for wireless sensor networks enables that different devices cooperate to solve different signal processing tasks. A crucial first step is to answer the question: who observes what? Recently, several distributed algorithms have been proposed, which frame the signal/object labelling problem in terms of cluster analysis after extracting source-specific features, however, the number of clusters is assumed to be known. We propose a new method called Gravitational Clustering (GC) to adaptively estimate the time-varying number of clusters based on a set of feature vectors. The key idea is to exploit the physical principle of gravitational force between mass units: streaming-in feature vectors are considered as mass units of fixed position in the feature space, around which mobile mass units are injected at each time instant. The cluster enumeration exploits the fact that the highest attraction on the mobile mass units is exerted by regions with a high density of feature vectors, i.e., gravitational clusters. By sharing estimates among neighboring nodes via a diffusion-adaptation scheme, cooperative and distributed cluster enumeration is achieved. Numerical experiments concerning robustness against outliers, convergence and computational complexity are conducted. The application in a distributed cooperative multi-view camera network illustrates the applicability to real-world problems.Comment: 12 pages, 9 figure

    On the cosmic convergence mechanism of the massless dilaton

    Get PDF
    The converging mechanism discussed in [Damour & Nordtvedt, Physical Review Letters,70,15] for scalar-tensor theories has been applied to dilaton-like theories in several subsequent papers. In the present communication, we show that an unfortunate assumption in those studies led to a scalar-field equation unsuitable for the study of the dilaton field. The corrected scalar-field equation turns to change the numerical outcome of those studies in general, but even sometimes their qualitative aftermath. Therefore, the present result call for new investigations of the subject. On the other hand, our result shows that the string-inspired theory presented in [Minazzoli & Hees, Physical Review D,88,4] is naturally solution to the problem of the effective constancy of the fundamental coupling constants at late cosmic times, while it requires less fine-tuning than other massless dilaton or usual stalar-tensor theories.Comment: 4 pages -- accepted for publication in Physics Letters

    Constructing the secular architecture of the solar system I: The giant planets

    Full text link
    Using numerical simulations, we show that smooth migration of the giant planets through a planetesimal disk leads to an orbital architecture that is inconsistent with the current one: the resulting eccentricities and inclinations of their orbits are too small. The crossing of mutual mean motion resonances by the planets would excite their orbital eccentricities but not their orbital inclinations. Moreover, the amplitudes of the eigenmodes characterising the current secular evolution of the eccentricities of Jupiter and Saturn would not be reproduced correctly; only one eigenmode is excited by resonance-crossing. We show that, at the very least, encounters between Saturn and one of the ice giants (Uranus or Neptune) need to have occurred, in order to reproduce the current secular properties of the giant planets, in particular the amplitude of the two strongest eigenmodes in the eccentricities of Jupiter and Saturn.Comment: Astronomy & Astrophysics (2009) in pres

    Review: A Coherent and Comprehensive Model of the Evolution of the Outer Solar System

    Get PDF
    Since the discovery of the first extra-solar planets, we are confronted with the puzzling diversity of planetary systems. Processes like planet radial migration in gas-disks and planetary orbital instabilities, often invoked to explain the exotic orbits of the extra-solar planets, at first sight do not seem to have played a role in our system. In reality, though, there are several aspects in the structure of our Solar System that cannot be explained in the classic scenario of in-situ formation and smooth evolution of the giant planets. This paper describes a new view of the evolution of the outer Solar System that emerges from the so-called 'Nice model' and its recent extensions. The story provided by this model describes a very "dynamical" Solar System, with giant planets affected by both radial migrations and a temporary orbital instability. Thus, the diversity between our system and those found so far around other stars does not seem to be due to different processes that operated here and elsewhere, but rather stems from the strong sensitivity of chaotic evolutions to small differences in the initial and environmental conditions.Comment: in press in CR Physique de l'Academie des Science
    corecore