17,975 research outputs found
Porous-based rheological model for tissue fluidisation
It has been experimentally observed that cells exhibit a fluidisation process when subjected to a transient stretch, with an eventual recovery of the mechanical properties upon removal of the applied deformation. This fluidisation process is characterised by a decrease of the storage modulus and an increase of the phase angle. We propose a rheological model which is able to reproduce this combined mechanical response. The model is described in the context of continua and adapted to a cell-centred particle system that simulates cell–cell interactions. Mechanical equilibrium is coupled with two evolution laws: (i) one for the reference configuration, and (ii) another for the porosity or polymer density. The first law depends on the actual strain of the tissue, while the second assumes different remodelling rates during porosity increase and decrease. The theory is implemented on a particle based model and tested on a stretching experiment. The numerical results agree with the experimental measurements for different stretching magnitudes.Peer ReviewedPostprint (author's final draft
Rigidity and flexibility of biological networks
The network approach became a widely used tool to understand the behaviour of
complex systems in the last decade. We start from a short description of
structural rigidity theory. A detailed account on the combinatorial rigidity
analysis of protein structures, as well as local flexibility measures of
proteins and their applications in explaining allostery and thermostability is
given. We also briefly discuss the network aspects of cytoskeletal tensegrity.
Finally, we show the importance of the balance between functional flexibility
and rigidity in protein-protein interaction, metabolic, gene regulatory and
neuronal networks. Our summary raises the possibility that the concepts of
flexibility and rigidity can be generalized to all networks.Comment: 21 pages, 4 figures, 1 tabl
Numerical analysis of a mechanotransduction dynamical model reveals homoclinic bifurcations of extracellular matrix mediated oscillations of the mesenchymal stem cell fate
We perform one and two-parameter numerical bifurcation analysis of a
mechanotransduction model approximating the dynamics of mesenchymal stem cell
differentiation into neurons, adipocytes, myocytes and osteoblasts. For our
analysis, we use as bifurcation parameters the stiffness of the extracellular
matrix and parameters linked with the positive feedback mechanisms that
up-regulate the production of the YAP/TAZ transcriptional regulators (TRs) and
the cell adhesion area. Our analysis reveals a rich nonlinear behaviour of the
cell differentiation including regimes of hysteresis and multistability, stable
oscillations of the effective adhesion area, the YAP/TAZ TRs and the
PPAR receptors associated with the adipogenic fate, as well as
homoclinic bifurcations that interrupt relatively high-amplitude oscillations
abruptly. The two-parameter bifurcation analysis of the Andronov-Hopf points
that give birth to the oscillating patterns predicts their existence for soft
extracellular substrates (), a regime that favours the neurogenic and
the adipogenic cell fate. Furthermore, in these regimes, the analysis reveals
the presence of homoclinic bifurcations that result in the sudden loss of the
stable oscillations of the cell-substrate adhesion towards weaker adhesion and
high expression levels of the gene encoding Tubulin beta-3 chain, thus
favouring the phase transition from the adipogenic to the neurogenic fate
Motor proteins traffic regulation by supply-demand balance of resources
In cells and in vitro assays the number of motor proteins involved in
biological transport processes is far from being unlimited. The cytoskeletal
binding sites are in contact with the same finite reservoir of motors (either
the cytosol or the flow chamber) and hence compete for recruiting the available
motors, potentially depleting the reservoir and affecting cytoskeletal
transport. In this work we provide a theoretical framework to study,
analytically and numerically, how motor density profiles and crowding along
cytoskeletal filaments depend on the competition of motors for their binding
sites. We propose two models in which finite processive motor proteins actively
advance along cytoskeletal filaments and are continuously exchanged with the
motor pool. We first look at homogeneous reservoirs and then examine the
effects of free motor diffusion in the surrounding medium. We consider as a
reference situation recent in vitro experimental setups of kinesin-8 motors
binding and moving along microtubule filaments in a flow chamber. We
investigate how the crowding of linear motor proteins moving on a filament can
be regulated by the balance between supply (concentration of motor proteins in
the flow chamber) and demand (total number of polymerised tubulin
heterodimers). We present analytical results for the density profiles of bound
motors, the reservoir depletion, and propose novel phase diagrams that present
the formation of jams of motor proteins on the filament as a function of two
tuneable experimental parameters: the motor protein concentration and the
concentration of tubulins polymerized into cytoskeletal filaments. Extensive
numerical simulations corroborate the analytical results for parameters in the
experimental range and also address the effects of diffusion of motor proteins
in the reservoir.Comment: 31 pages, 10 figure
Effect of age and cytoskeletal elements on the indentation-dependent mechanical properties of chondrocytes.
Articular cartilage chondrocytes are responsible for the synthesis, maintenance, and turnover of the extracellular matrix, metabolic processes that contribute to the mechanical properties of these cells. Here, we systematically evaluated the effect of age and cytoskeletal disruptors on the mechanical properties of chondrocytes as a function of deformation. We quantified the indentation-dependent mechanical properties of chondrocytes isolated from neonatal (1-day), adult (5-year) and geriatric (12-year) bovine knees using atomic force microscopy (AFM). We also measured the contribution of the actin and intermediate filaments to the indentation-dependent mechanical properties of chondrocytes. By integrating AFM with confocal fluorescent microscopy, we monitored cytoskeletal and biomechanical deformation in transgenic cells (GFP-vimentin and mCherry-actin) under compression. We found that the elastic modulus of chondrocytes in all age groups decreased with increased indentation (15-2000 nm). The elastic modulus of adult chondrocytes was significantly greater than neonatal cells at indentations greater than 500 nm. Viscoelastic moduli (instantaneous and equilibrium) were comparable in all age groups examined; however, the intrinsic viscosity was lower in geriatric chondrocytes than neonatal. Disrupting the actin or the intermediate filament structures altered the mechanical properties of chondrocytes by decreasing the elastic modulus and viscoelastic properties, resulting in a dramatic loss of indentation-dependent response with treatment. Actin and vimentin cytoskeletal structures were monitored using confocal fluorescent microscopy in transgenic cells treated with disruptors, and both treatments had a profound disruptive effect on the actin filaments. Here we show that disrupting the structure of intermediate filaments indirectly altered the configuration of the actin cytoskeleton. These findings underscore the importance of the cytoskeletal elements in the overall mechanical response of chondrocytes, indicating that intermediate filament integrity is key to the non-linear elastic properties of chondrocytes. This study improves our understanding of the mechanical properties of articular cartilage at the single cell level
Physics of Transport and Traffic Phenomena in Biology: from molecular motors and cells to organisms
Traffic-like collective movements are observed at almost all levels of
biological systems. Molecular motor proteins like, for example, kinesin and
dynein, which are the vehicles of almost all intra-cellular transport in
eukayotic cells, sometimes encounter traffic jam that manifests as a disease of
the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the
collagen fibrils of the extracellular matrix of vertebrates, has also been
observed in recent experiments. Traffic-like movements of social insects like
ants and termites on trails are, perhaps, more familiar in our everyday life.
Experimental, theoretical and computational investigations in the last few
years have led to a deeper understanding of the generic or common physical
principles involved in these phenomena. In particular, some of the methods of
non-equilibrium statistical mechanics, pioneered almost a hundred years ago by
Einstein, Langevin and others, turned out to be powerful theoretical tools for
quantitaive analysis of models of these traffic-like collective phenomena as
these systems are intrinsically far from equilibrium. In this review we
critically examine the current status of our understanding, expose the
limitations of the existing methods, mention open challenging questions and
speculate on the possible future directions of research in this
interdisciplinary area where physics meets not only chemistry and biology but
also (nano-)technology.Comment: 33 page Review article, REVTEX text, 29 EPS and PS figure
Consciousness operates beyond the timescale for discerning time intervals: implications for Q-mind theories and analysis of quantum decoherence in brain
This paper presents in details how the subjective time is constructed by the brain cortex via reading packets of information called "time labels", produced by the right basal ganglia that act as brain timekeeper. Psychophysiological experiments have measured the subjective "time quanta" to be 40 ms and show that consciousness operates beyond that scale - an important result having profound implications for the Q-mind theory. Although in most current mainstream biophysics research on cognitive processes, the brain is modelled as a neural network obeying classical physics, Penrose (1989, 1997) and others have argued that quantum mechanics may play an essential role, and that successful brain simulations can only be performed with a quantum computer. Tegmark (2000) showed that make-or-break issue for the quantum models of mind is whether the relevant degrees of freedom of the brain can be sufficiently isolated to retain their quantum coherence and tried to settle the issue with detailed calculations of the relevant decoherence rates. He concluded that the mind is classical rather than quantum system, however his reasoning is based on biological inconsistency. Here we present detailed exposition of molecular neurobiology and define the dynamical timescale of cognitive processes linked to consciousness to be 10-15 ps showing that macroscopic quantum coherent phenomena in brain are not ruled out, and even may provide insight in understanding life, information and consciousness
- …
