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Industrials (EUETIB), Universitat Politècnica de Catalunya - Barcelona Tech (UPC),

08036, Barcelona, Spain
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Abstract

It has been experimentally observed that cells exhibit a fluidisation pro-
cess when subjected to a transient stretch, with an eventual recovery of the
mechanical properties upon removal of the applied deformation. This fluidi-
sation process is characterised by a decrease of the stored modulus and an
increase of the phase angle. We propose a rheological model which is able
to reproduce this combined mechanical response. The model is described in
the context of continua and adapted to a cell-centred particle system that
simulates cell-cell interactions. Mechanical equilibrium is coupled with two
evolution laws: (i) one for the reference configuration, and (ii) another for the
porosity or polymer density. The first law depends on the actual strain of the
tissue, while the second assumes different remodelling rates during porosity
increase and decrease. The theory is implemented on a particle based model
and tested on a stretching experiment. The numerical results agree with the
experimental measurements for different stretching magnitudes.

Keywords: fluidisation, viscoelasticity, softening, cell remodelling, cell
rheology

1. Introduction

Cells are complex structures consisting of a wide number of binding pro-
teins and other solid and fluid constituents. Mechanically, they are stabilized
by the cytoskeleton, a highly active contractile polymeric network which is
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able to (de)polymerise and reinforce [9]. This cytoskeletal activity renders
cells complex rheological responses, exhibiting stiffening [7, 9, 33] and soft-
ening [37]. Due to a reduction of the phase angle upon stretching, it is also
considered that cells undergo fluidisation, either individually [13] or when
forming a soft tissue [34]. We here propose a rheological model for such soft-
ening and fluidisation process, which is also able to simulate the eventual
recovery upon removal of the applied stretch.

Material fluidisation has been associated to apoptotic events and cell
division [27]. We instead restrict our attention to tissues with a constant
number of cells and no connectivity changes, as it has been observed in in
vitro experiments [13, 34]. Other experiments have revealed the reversibil-
ity of the softening and stiffening during a stretch cycle, and explained this
behaviour through the presence of motor proteins [3] or the geometrical ori-
entation of the fibers [12]. We focus instead on the delayed recovery of the
material properties after the stretch cycle. This response has been already
explained in the context of soft glassy framework using a Glassy Wormlike
Chain model (GWLC) [9], which has been extended for modelling material
softening [37]. These authors propose a model based on a non-linear form
of the GWLC model based on crosslinked biopolymer networks, where bond
fraction kinetics is accounted for.

Since we aim to implement the softening behaviour on arbitrary mul-
ticellular systems, and include the resulting rheological law on general cell
topologies, we present here an alternative model based on an extension of a
Maxwell-like law that uses an adaptive resting length [22]. We complement
the model with a suitable evolution of an additional variable that represents
the polymer density. This porosity-like variable mediates the mechanical re-
sponse of the cell and controls the effective stress that cells can exert, in a
similar manner to the damage variable in continuum mechanics. The mod-
ulation of softening with damage variables has already been formulated for
instance in [24, 25]. In our model, we relate cell stiffness with the porosity
and damage variables in a similar manner as it has been experimentally mea-
sured [19], but in contrast to damage models, the damage-like is allowed to
decrease due to recovery of initial porosity.

The relevance of porosity in living tissues has already been considered in
early models of cardiac muscle [39]. More recently, it has been applied for
simulating polymeric materials [35], or when assuming a biphasic material
consisting of a porous cytoskeletal network [19]. Other continuous models
for rubbers took into account the molecular chain density (or fraction of
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soften versus stiff material) [26], or the fibre and matrix contributions through
internal variables [2, 16, 30]. These models are based on damage variables
or phase transitions, and only consider irreversible softening. In our case
instead the material stiffness is eventually recovered, as our formulation also
captures.

2. Continuum model

The explicit modelling of the filaments in the cytoskeleton would render
the resulting model computationally expensive if not prohibitive for analysing
multicellular systems. For this reason, we idealise first in this section the
observed domain Ω ∈ R3 as a continuum, whose shape is the result of an
active and an elastic deformation. Computationally, we express this two
contributions by decomposing the deformation gradient [10, 21, 28, 29], where
each material point X0 ∈ Ω0 moves to a new position x ∈ Ω(t) ∈ R3. The
total deformation gradient F = ∂x

∂X0
is decomposed in an active and an elastic

deformation, respectively denoted by F a = ∂xa

∂X0
and F e = ∂x

∂xa
, and such that

F = F eF a.
The vector xa ∈ Ωa denotes the position of the material points prior

to any elastic deformation, with Ωa a relaxed configuration, not necessarily
observed or compatible with the material impenetrability assumption. This
incompatibility assumes that the vector field xa is piecewise continuous. At
the regions where it is discontinuous, the definitions F a = ∂xa

∂X0
and F e =

∂x
∂xa

are not valid, and F a and F e must be assumed as non-smooth two-
point tensors. We use the configuration Ωa to represent the remodelling and
internal reorganisation of the biologically active material.

The description of the cell activity is represented in this paper as a func-
tion of a parameter P that represents the polymer porosity or void content.
The resulting model is based on three basic ingredients:

• Mechanical equilibrium of the observed domain Ω.

• Evolution law for the reference configuration Ωa, as a function of the
elastic deformation F e and polymer porosity P .

• Evolution law for the polymer porosity P .

The second ingredient reflects the ability of cells to adapt to the imposed
deformations, while the third ingredient aims to mimic the evolution of the
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polymeric network without explicitly representing the elements of the cy-
toskeleton. We will next detail each one of the three ingredients given above.

Figure 1: Schematic of the multiplicative decomposition of the total deformation gradient,
F , in a growth component, F a, and elastic component, F e, i.e. F = F eF a.

2.1. Mechanical equilibrium

Similarly to the damage models, we consider a free energy function which
is mediated through a damage-like parameter D,

U(C, D) = (1−D)U e(C), (1)

where U e(C) is the strain energy function. The latter is assumed to depend
on the right Cauchy Green tensor C = F eTF e, with F e = ∂x

∂xa
the defor-

mation gradient tensor. Parameter D is assumed to depend on a porosity
variable P as,

D = c1
P − P0

P0

. (2)

with c1 a positive material constant. Variable P represents the porosity or
void content of the cross-linked network of the cytoskeleton, and P0 is a
reference value. P may be interpreted as the inverse of the polymer density
or entanglement of the cytoskeleton. We will assume that both P and P0 are
non-negative, i.e. P, P0 ≥ 0, and also that 0 ≤ P ≤ P0(1 + c1)/c1. Therefore,
and unlike damage models, D may have negative values, and −c1 ≤ D ≤
1. The case D ≤ 0 represents stiffening due to increased entanglement or
increase of polymer density.
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The equilibrium equations of the continuum Ω are given by Cauchy equa-
tion [11]:

∇ · ((Je) −1F eSF eT ) = 0, ∀x ∈ Ω, (3)

where S is the second Piola-Kirchhoff stress tensor, and Je = det(F e). The
relation between S and U(C, D) follows from the Clausius-Duhem inequality
for an isothermal material [18],

1

2
S : Ċ − U̇ ≥ 0.

The rate of free energy can be attributed the variations of P and C, but
for living materials, also to other energy sources such as ATP hydrolysis or
binding of adhesive complexes, which will be here represented by the quantity
Nc. In this case, the inequality above implies that,

S = 2
∂U

∂C
= 2(1−D)

∂U e

∂C
∂U

∂Nc

Ṅc +
∂U

∂P
Ṗ ≤ 0

Note that from the expression of U in (1)-(2), the previous inequality
reads,

c1
Ṗ

P0

U e(C) ≥ ∂U

∂Nc

Ṅc.

Since c1, P0 > 0 and U e(C) ≥ 0, we have that Ṗ ≥ α ∂U
∂Nc

Ṅc, with α > 0,

when the tissue is deformed (U e > 0). For a dead material (Ṅc = 0), the
porosity P and damage variable D may only increase, but for a living mate-
rial, this is not necessarily so, and Ṗ can change sign, depending on the rate
of adhesive complexes and cell activity. A more detailed description of the
mechanical balance of the cytoskeleton and its thermodynamical equilibrium
can be found in [17]. We will here propose an evolution law for P in Section
2.3 that actually allows for positive and negative rates of porosity.

The variations of the stress response have effects on the strain energy,
which is modulated by this porous-like variable. We assume that the avail-
able energy of the active material (”metabolic” energy) is unbounded, so
that cell activity is energetically unconstrained. This hypothesis is based on
estimations made on a set of tissues and strain rates [5], which include our
range ε̇ ≈ 0.025− 0.05s−1, common in the lung tissues studied here.
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2.2. Evolution of active configuration

The actin cytoskeleton is a composite intracellular biopolymer network
made of actin filaments that can actively vary their length and entangle-
ment. Since these changes may strongly affect cellular rheology, we in-
clude here an evolution law for the active deformation of the polymers,
Ea = 1

2

(
F aTF a − I

)
. This deformation may be due to multiple phenomena

such as transient domain unfolding [6], remodelling of cytoskeletal filaments
[4], un/rebinding of sticky contacts [32], activity of crosslinking molecules
[14, 38], forming of actin-myosin cross bridges [12], or (de)polymerisation
[1, 15].

We will not detail the specific causes behind the changes in the polymer
lengths, which we mechanically identify with a time-varying active deforma-
tion Ea that satisfies the following evolution law:

Ėa = γ : Ee, (4)

with Ee = 1
2

(
F eTF e − I

)
the Green-Lagrange elastic strain tensor. Tensor

γ represents the resistance of the network to adapt its relaxed configuration
to the current elastic strain and will be called the remodelling rate.

The physical picture behind the evolution law in (4) is a network of
cross-linked actin filaments (Figure 2a) that when subjected to a macro-
scopic strain, it stretches mainly as a result of two combined phenomena: (i)
a reversible (elastic) deformation and a (ii) non-reversible remodelling and
lengthening, due to the (de)polymerisation process of the filaments.

F
F

Figure 2: (a) Schematic of network of actin filaments connected by flexible cross-links. (b)
Schematic of strain induced changes in the active deformation Ja = det(F a) of a reduced
system with two filaments and a cross-link (white circle). (b1) Initial configuration with
active deformation Ja

0 = 1. (b2) Configuration under an applied load. (b3) New unstrained
configuration with modified active deformation Ja > Ja

0 .
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Similarly to the elasticity tensor, we propose an isotropic form of the
remodelling rate tensor as γijkl = γ1δijδkl + γ2 (δikδjl + δilδjk), with γ1 and γ2
scalar parameters. In this case, due to the symmetry of Ee, the evolution
law in (4) reduces to,

Ėa = γ1tr(E
e) + 2γ2E

e.

When γ1 = 0, the form above is tantamount to applying an active de-
formation which is component-wise proportional to the elastic deformation,
or when γ2 = 0, which is proportional to the linearised volumetric elastic
deformations. Alternatively, if some conditions on the total deformations F
are considered, the amount of active deformation may be accordingly con-
strained, restricting the form of tensor γ. For instance, if the constraint
det(F ) = 1 applies, we must have that J̇ = J̇aJe + JaJ̇e = 0. In this case,
since,

J̇a = Jatr

(
∂va

∂xa

)
= Ja∇xa · va,

with va = dxa

dt

∣∣
X0=const

, the following relation must hold:

∇xa · va = −J̇e/Je.

This constraint may be combined with the relationship

tr(F a−T ĖaF a−1) = ∇xa · va,

giving rise to the following kinematic condition:

−J̇e/Je = tr(F a−T ĖaF a−1).

This relation is not automatically satisfied if the simple linear evolution
form in (4) is employed. However, and in view of the condition above, a

more sophisticated evolution law such as Ėa = − J̇e

3Je
F aTF a would guaran-

tee the isochoric constraint J̇ = 0. For simplicity, and when considering
one-dimensional implementations, we will restrict our presentation to linear
evolution laws with the form in (4).

In addition to the evolution law in (4), filament density has been also
identified as an important parameter in mechanical weakening [31]. This de-
pendence is mathematically described with the following simple relationship,

γ = Pγ0, (5)
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where γ0 is considered a constant remodelling rate. Figure 3 illustrates this
dependence. As the porosity P increases (or cell density decreases), the cy-
toskeleton adapts more easily its resting configuration, and conversely, as the
porosity decreases, more filaments resist to adapt the resting configuration.

The relations in (4)-(5) are simple linear laws, but without further ex-
perimental evidence, it seems as yet unnecessary to test more complicated
relations. The main implications of the proposed laws are,

(i) No internal remodelling occurs if the filament is not subjected to stretch,

(ii) The filament tends to reduce the amount of elastic strain energy.

(iii) The remodelling rate increases as the polymer density decreases.

2.3. Cell porosity evolution

Since we do not aim to explicitly model the polymer network, but to
characterise this network through its porosity and resting length, we propose
here the following relation for the evolution of P :

Ṗ = c±2

(
P0 −

P

(Ja)c3

)
, (6)

with Ja = det(F a), and P0 a reference homeostatic value of the porosity,
at which no further changes on P are induced. Equation (6) represents a
self-regulation of the void content, where the material constants c±2 and c3
determine how strongly this self-regulation takes place, and how strongly Ṗ
depends on the active deformation Ja. We further hypothesise that c±2 may
take different values dependent on whether P is increasing (c±2 = c+2 ) or P is
decreasing (c±2 = c−2 ), with c+2 > c−2 . The physical hypotheses in (6) are the
following:

• Networks with larger resting configurations induce an increase of the
porosity (filaments tend to stay farther from each other) while smaller
resting domains render the polymeric network denser. This is illus-
trated in Figure 3. The dependence of Ṗ on Ja is plotted in Figure
4a.

• When the porosity is below the homeostatic state P0(J
a)c3 , the porosity

will tend to increase, and vice-versa. Figure 4b illustrates this depen-
dence.
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• Unsymmetrical polymer remodelling: porosity recovers its reference
value P0(J

a)c3 much easily when P is increasing than when it is de-
creasing.

We note that a somewhat similar relation as in the first hypothesis has
been experimentally confirmed [19], where a longer entanglement length has
been associated with an increase of the porosity and a reduction of tissue
stiffness.

(a) (b) (c)

Ja > 1
P > P0

D > 0
γ > P0γ0

Ja = 1
P = P0

D = 0
γ = P0γ0

Ja < 1
P < P0

D < 0
γ < P0γ0

Figure 3: Physical illustration of equations (2), (5) and (6):(a) When the resting volume
increases (Ja > 1), the material softens and the porosity increases (Ṗ > 0), and eventually
diminishes when P0−P/(Ja)c3 < 0. (b) Initial configuration of a system of actin filaments
with resting volume equal to Ja

0 = J0 = 1 = det(F e). (c) By decreasing the resting volume
(Ja < 1), the material stiffens and the porosity decreases (Ṗ < 0) due to the reduction of
Ja, and eventually increases when P0 − P/(Ja)c3 > 0.

2.4. Summary of the model

The continuum model described so far can be summarised in the three
equations (3), (4) and (6), which may be gathered in a system of PDEs:

∇ · ((Je)−1 F eSF eT ) = 0,∀x ∈ Ω

Ėa = Pγ0 : Ee

Ṗ = c±2

(
P0 − P

(Ja)c3

) (7)
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Figure 4: Evolution of P according to equation (6) with c3 = 1, and c+2 /c
−
2 = 10. (a)

Rate of cell porosity, Ṗ , against the resting Ja, for P0 = 1, and different values of P . Ṗ
decreases when the resting volume decreases (Ja < 1). (b) Rate of cell porosity, Ṗ , as a
function of P for P0 = 1, and different values of Ja.

where

S = 2
∂U

∂C
, U(F ) = (1−D)U e(F ) , D = c1

P − P0

P0

(8)

According to the expression of the damage factor 1−D = 1 + c1 − c1 PP0

and the evolution of Ėa, if the porosity increases while keeping the elastic
deformation Ee constant, the stress S will decrease but the active strains Ea

will increase. Indeed, and as depicted in Figure 3a, if the density of filaments
is lower, then the total stress carried by all the filament should decrease,
and the cell also adapts more easily to the current elastic deformation. Con-
versely, a reduction in cell porosity causes an increase in the stresses (for
a given elastic deformation) and a decrease of the active strains due to a
reduction of polymer remodelling (see Figure 3c).

We note that we are not explicitly modelling fluid flow in the porous
biological material, and so this is not a so-called poroelastic model. However,
porosity is considered as an internal variable which modulates the effective
stress, but without considering the transfer of stresses between fluid and solid
phases.

The formulation in (7) formally satisfies the physical hypotheses, but
its not straightforward to implement in the continuum context. The values
in the fourth-order tensor γijkl, which represent the rate of a given active
strain in the components ij when subjected to an elastic strain in the kl
component cannot be easily measured experimentally. For this reason we
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present in the next section a one dimensional version, which would contain
far less parameters and that can be implemented in a truss model of the
tissue.

3. Computational implementation on cell-centred model

The equations of the continuum model described in the previous section
are here adapted to a particle based model in order to simplify the evolution
law for Ėa. Figure 5 shows a schematic of the cell-centred model that will be
employed to simulate the fluidisation phenomena. Each cell-centre (nucleus)
is represented as a particle xi, i = 1, . . . , N , and the cell-cell interactions are
implemented on Ne bar elements that join the particles using a Delaunay
triangulation of the initial particle positions. The Voronoi tessellation of the
Delaunay triangulation (see Figure 5b) may be used to represent the cell-cell
boundaries. In this work though, we will not make use of these boundaries
in our equations.

(a) (b)

Figure 5: A schematic view of the truss model: (a) Delaunay triangulation of the cell-
centres (black lines). (b) Voronoi tessellation representing the cell boundaries (red lines).

We remark that in the discrete cell-centred representation that we are
using, we are transferring some mechanical properties of the material such
as the Poisson effect to the truss topology. As such, the mechanical response
is dependent on the actual connectivity. This apparent arbitrariness aims
though to mimic the discrete nature of cellular tissues, which are able to
change topology, and have distinct properties between the cell boundaries
and the bulk material.

By including the porous-based rheological law described here to the bar
elements, we aim to extend previous cell-centred models [20, 22, 23] with
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fluidisation capabilities. We adapt in the next sections the rheological model
described for continua in Section 2 to the general truss system depicted in
Figure 5.

3.1. Equilibrium equations

The connection between two cell centres i and j is defined by the presence
of a one-dimensional bar element wtih an associated elastic potential U ij.
The decomposition of the deformation gradient is now rewritten as a function
of the current length of a bar element between cell centres i and j, denoted
by lij = ||xj − xi|, its active (or relaxed length) Lij, and its initial length
Lij0 = ||Xj

0 −X i
0|. Note that the positions xa after the active deformation

will not be computed, and just the active length Lij will be included in the
model as an internal variable.

In parallel with the elastic potential in Section 2.1, we define the following
elastic potential of a bar joining nodes i and j,

U ij =
1

2
k

(
1− c1

P ij − P0

P0

)(
εe,ij

)2
, (9)

where εe,ij is the elastic strain between cells i and j along direction

eij = (xj − xj)/lij,

and k represents the stiffness of the filament. The factor c1
P ij−P0

P0
represents

the damage-like variable, which modulates the elastic energy through the ele-
mental porosity variable P ij. In our implementation we will use the following
strain measure,

εe,ij =
lij − Lij

Lij
. (10)

The elastic force along the direction xi−xj, denoted by gij, is computed

as eij ∂U
ij

∂εe,ij

∣∣∣
L
, which yields

gij = k

(
1− c1

P ij − P0

P0

)
εe,ijeij. (11)

The global equilibrium of the system is achieved by equalising the resul-
tant of all the elastic forces at each cell-centre to zero, that is,∑

j

gij = 0, i = 1, . . . , N. (12)
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These equations, and the Cauchy equilibrium equations in (3), are both
equivalent to minimising the total elastic energy of the network and continua,
respectively. We emphasise that the modulations of the cell elasticity with
the porosity variable in (11) aims to mimic the measured relation between
density of F-actin filaments and cell stiffness [19].

3.2. Active length evolution

The evolution law of the active strain in (4) is here rewritten in terms of
the active length variable L as:

L̇ij = P ijγ0ε
eLij = P ijγ0(l

ij − Lij). (13)

The tensor like character of the active deformations is thus replaced by a
scalar lengthening rate L̇ij, which is regulated by a scalar remodelling rate,
γij = P ijγ0, not necessary the same for each element ij. This elemental
internal remodelling rate of the cytoskeleton has the same meaning as its
tensor counterpart, but along the direction of the cell-cell contact. We will
consider the value of γ0 as constant and homogeneous throughout the cellular
system. It has been demonstrated in [22] that, for a constant porosity value
P , the evolution law in (13) can mimic the response of the Maxwell rheo-
logical model. As such, this model provides a strain and strain-dependent
rate response, although in our experiments we have used a constant applied
strain rate.

3.3. Porosity evolution

The evolution for the porosity takes in the bar system the following form:

Ṗ ij = c±2

(
P0 −

P ij(
Lij/Lij0

)c3
)
, (14)

which is equivalent to the evolution in equation in (6) but replacing Ja by
Lij/Lij0 .

Like equation (6), the relation above assumesf that the rate of P depends
on whether P increases or decreases, and on the current active deformation.
Equation (14) also assumes a reference value P0, which is employed here
because the experiments simulated have a reference asymptotic configuration.
According to the numerical tests shown in the next section, this value P0 may
be related to the elastic strain without altering much our results. However,
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without further experiments (sustained stretched or large cycling stretches),
it is not possible to deduce a clear dependence of the reference porosity P0

on the strains or resting length.

3.4. Summary

The particle based model is described by gathering the three equations
in (12), (13) and (14), which may be jointly written as:

f(x, La, P ) = 0, (15)

with

f(x, La, P ) =


∑

j k
1
Lij

(
1− c1 P

ij−P0

P0

)
εe,ijeij, i = 1, . . . , N

L̇ij − γ0P ijεe,ij, ij = 1, . . . , Ne

Ṗ ij − c±2
(
P0 − P ij

(Lij/Lij0 )
c3

)
, ij = 1, . . . , Ne

 . (16)

After replacing the continuum model by a particle based model, we have
turned the system of PDEs in (7) into the system of ODEs given above. This
system is discretised on time in Appendix A using a weighting parameter θ
[36]. In nsd space dimensions, the resulting non-linear system of equations
that allows us to find the new set of nsd×N + 2×Ne unknowns: xin+1, L

ij
n+1

and P ij
n+1, is solved using a Newton-Raphson scheme.

Due to the elemental character of the active lengths and porosities, these
variables can be statically condensed, giving rise to a non-linear system of
solely nsd × N unknowns, x1, . . . ,xN . Appendix B explains the static con-
densation procedure and the system of linear equations to be solved at each
Newton-Raphson iteration.

4. Results

4.1. Experimental set-up

We will here aim to reproduce the experiment carried out by X Trepat et
al. [34]. In these experiments, the adherent human airway muscle (HASM)
cells were cultured on a flexible substrate which is subjected to a biaxial and
uniform single transient stretch during 4 seconds (see Figure 6). Before and
after the stretching, the evolution of the storage and loss modulus G′ and
G′′ was measured intermittently using optical magnetic twisting cytometry
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(OMTC), where magnetic microbeads attached to cytoskeleton were period-
ically subjected to small magnetic oscillations with frequency 2πω = 0.75Hz
during the subsequent 1000 seconds.

We remind that the storage and loss modulus, G′ and G′′, measure the
solid-like and fluid-like response of a material, and correspond to the real
and imaginary components of a complex modulus G∗ = G′+ iG′′ in a general
rheological law σ∗(t) = G∗ε∗(t) [8]. When solid elastic materials are subjected
to oscillatory boundary conditions, strains ε(t)∗ and stresses σ(t)∗ are in
phase, that is σ(t)∗ = G′ε(t)∗, G′′ = 0 and δ = atan(G′′/G′) = 0. Instead,
stresses in fluids depend on the strain rates, so that σ∗ and ε∗ are delayed
by a phase angle δ = π/2, which in the complex plane is equivalent to relate
them as σ(t)∗ = iG′′ε(t)∗, with G′ = 0.

Figure 6: Schematic description of the stretching process. Cells were subjected to a single
transient stretch of 4 seconds and then applying an smaller oscillatory strain of 1000
seconds with frequency ω = 0.75Hz.The applied displacement ū is such that the tissue is
subjected to a maximum prescribed value of strain ε̄.

In the reported experiments by Trepat et al. [34], tissue fluidisation
after cessation of a single transient stretch is observed through a prompt
decrease of the storage modulus G′, and an increase of the phase angle δ
and loss modulus G′′, with a slow eventual recovery. In the experiments
and in our simulations we have measured the normalised moduli G′n and G′′n
relative to their values before the stretching, G′0 and G′′0. Figure 7 illustrates
the experimental data of the phase angle δ (Figure 7a) and the normalised
modulus G′n = G′/G′0 (Figure 7b) when imposing a strain ε̄ = 5% (red
circles) and ε̄ = 10% (green circles).
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Figure 7: Evolution of the phase angle δ (a) and stored modulus G′ (b) after stretch
application on a single element of ε = 10% and ε = 5%. Circles depict the experimental
data, while continuous lines represent the results of the numerical simulation. Data is
plotted from time t = 5s, with t = 4s the end of the large stretching cycle.

4.2. Model fitting

After cessation the transient stretch, the phase angle δ and the normalised
stiffness G′ are computed in the model as follows,

δ = tan−1(G′′n/G
′
n) G′n =

σ0
ε0

cos(δ) (17)

with G′n and G′′n the storage and loss modulus, respectively, and with σ0 and
ε0 the maximum values of the stress and strain signals. In the numerical and
experimental simulations we used the oscillatory strain ε0 = 1%. The phase
angle δ increased after the single transient stretch and then slowly recovered.
Instead, stored modulus G′n decreased after the single transient stretch and
then slowly recovered after 20 minutes, approximately. In our model, the
damage-like variable D in equation (8), which depends on the porosity P , is
responsible for modulating this fluidisation effect.

The parameters of the model p = {k, γ0, c1, c±2 , c3} have been fitted in
order to replicate the experimental results. The fitting has been aciheved us-
ing a least square procedure adapted from the Matlab function lsqcurvefit,
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which minimises the following functional,

f(k, γ0, c1, c
±
2 , c3) =

N∑
i=1

(
δ(ti)

E
10 − δ(ti)S10

)2
+

N∑
i=1

(
G′n(ti)

E
10 −G′n(ti)

S
10

)2
+

N∑
i=1

(
δ(ti)

E
5 − δ(ti)S5

)2
+

N∑
i=1

(
G′n(ti)

E
5 −G′n(ti)

S
5

)2
. (18)

The superscripts E and S denote respectively experimental and simu-
lated values, and the subscripts 5 and 10 correspond to values at ε̄ = 5%
and ε̄ = 10%. For each maximum strain, we used N = 34 points, which
required between 20 and 50 iterations in order to minimse f(k, γ0, c1, c

±
2 , c3).

The model has been fitted independently for one element and multicelular
systems.

4.3. One element simulations

In order to validate our model described in Section 2.4, we have simu-
lated the fluidisation process by first applying the stretch history given in
Figure 6 to a single bar element. We have used the fitting described in the
previous section, which gave the optimal values p∗ = {k, γ0, c1, c+2 , c−2 , c3} =
{1.13, 1.119, 2.02, 0.012, 0.0012, 4.75}. In our numerical model, we applied a
displacement ū to the right side of the unit length element, while the left
side remained fixed. Measurement of the moduli G′n and G′′n was achieved
by applying a smaller stretch of 1% with the same experimental frequency of
75Hz. This strain are large enough to trigger an oscillatory stress σ, and thus
measure the delay between ε and σ, but are small enough to avoid altering
the recovering of the G′n.

As shown in Figure 7, the model predictions follow the same trends of
the experimental data for the fitted values. The plots in Figure 8 show
the evolutions of the resting length and the porosity. While the trend of
the former follows the evolution of the imposed displacement, the latter has
a much slower decreasing curve. Indeed, according to equation (13), the
resting length adapts to the imposed strain, while in view of equation (14),
the porosity P tends to decrease and equalise the reference value P0 when
La = L0. However, due to the smaller value of c−2 , this reduction of P takes
place at much lower rate than the increase of P during the approximately
first 2 seconds of the stretching cycle, where c+2 is used and Ṗ > 0.

The different response of L and P is a basic ingredient of the model.
While resting length L follows the evolution of the applied displacement,
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Figure 8: Time evolution of L and P . The larger stretching cycle is applied during the first
4 seconds. (a) Evolution of resting length L. (b)-(c) Evolution of porosity P in unscaled
time units (b) and logarithmic units (c) after stretch application on a single element of
ε̄ = 10%.

due to the evolution law in (13), porosity P has a much slower recovery
due to the asymmetry of its evolution law in (14), which uses c+2 if Ṗ > 0
or c−2 when Ṗ < 0. In this sense, the resting length simulates short term
visoelsticity of the polymeric structure of filaments, while P represents much
slower cytoskeletal reorganisation and cytosol flow.
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Figure 9: Evolution of δ (left) and G′n (right) for different values of the fitting parameters
p = {k, γ0, c1, c±2 , c3}. Line indicated with p∗ correspond to optimal values, while other
lines have the same values, except the parameter indicated, which is augmented according
to the factor given in the legend.

Figures 8 and 9 also show the evolution of P , L, δ and G′n for differ-
ent parameters around the optimal values p∗. At this point, the functional
showed far less sensibility with respect to the constants k and c3 than to
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the other parameters γ0, c1 and c±2 . The remodelling rate γ0 determines the
initial and asymptotic phase angle δ0, while c1 and c2 control the length of
the recovering time and the drop of G′n, respectively. The stiffness value k
has nearly no effect, since it affects the tissue stiffness, which is normalised in
our plots. Parameter c3 also hardly affects the recovery, since it controls the
dependence of Ṗ on L (see equation (14)). Since the latter is fully recovered
after the stretch cycle of 4 seconds, when L ≈ L0, we have that L/L0 ≈ 1
and the parameter c3 becomes irrelevant.

4.4. Multicellular system simulations

With the aim of extending the analysis to multicellular systems, we ap-
plied the same stretch history to the cell-centred network shown in Figure
10, where the left side was kept fully fixed, and the right side followed the
displacement history in Figure 6. Figure 10a shows the deformed shape at
t = 2s, wher the stretching is at its maximum, while Figure 10b shows the
positions of the nuclei during recovery, which is very similar to the initial
positions. This initial cell-centred network was obtained by pre-stressing a
regular mesh of cells. This pre-stress was imposed in order to retrieve a
realistic distribution of cells, which in general form hexagonal cell shapes.

The phase angle δ and the stiffness G′n after cessation of the single tran-
sient stretch were computed in the same manner as previously described for
the single element. G′n was defined as the monolayer stiffness after stretch
relative to the initial stiffness G′0. It can be observed in Figure 11 that
using a similar set of parameters, in this case p = {k, γ0, c1, c+2 , c−2 , c3} =
{0.97, 1.17, 2.13, 0.012, 0.0012, 4.00}, the two curves corresponding to 5% and
10% stretch can be recovered. These values where obtained using the same
fitting process and functional in (18) than in the one element analysis.

The trends of the porosity and resting length were also similar, but as it
can be seen in Figure 10, remarkably so on the horizontal elements of the
network, which are those most affected by the stretching. The same fluidis-
tion process has been tested in other more regular networks or cell topologies
formed by pentagonal shapes, with very similar trends and porosity distri-
butions.

5. Discussion and Conclusions

A rheological model that exploits the changes in cell porosity has been
presented. Besides mechanical equilibrium, an evolution law of the active
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Figure 10: (a) Deformed configuration of multicellular network at time t = 2s with applied
boundary conditions. Bar colours indicate values of porosity P . (b) Configuration at time
t = 150s during recovery time. Cell boundaries are indicated in blue at the background.
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Figure 11: The response of the multicellular system to a transient stretch of ε = 10% and
ε = 5%. Circles depict the experimental data, and circles represent our simulation of 10%
and 5% of the strain, respectively.(a) Evolution of phase angle δ. (b) Evolution of stored
modulus G′.

configuration is used, which mimics the observed cell viscosity. We have
applied the methodology to model the reversible softening and increase of
the phase angle, the so-called fluidisation process observed in soft tissues. In
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the presented model, the porosity variable modulates the remodelling of the
cytoskeleton, which is able to dynamically change its resting length, and also
the effective mechanical response in a asimilar manner to damage models.

One of the hypotehesis behind the model is the fact that networks with
larger resting length will increase their porosity, since longer filaments are
increasingly distant. This assumption is not experimentally demonstrated
here, and further observations are needed in order to confirm this picture.
We do point out though that the correlation between the cell porosity and
cell stiffness has been measured in epithelial cells [19] and in polymeric hy-
drogels [40]. Furthermore, longer entanglement lengths have been associated
with lower stiffness. The complex interaction of cytoskeletal components and
adhesive proteins renders the cell with a wide range of mechanical responses.
We have not included all the possible interactions, but we represented in a
coarse manner those that seem to have a prominent role, and couple them
with as yet simple relationships.

The method has been applied to a single cell and multicellular systems,
but can be implemented in other more complex configurations, or even tissues
with changing topologies, as shown in [20]. The delayed recovery of the origi-
nal mechanical properties of the tissue is due to the unsymmetrical evolution
of the porosity, which is induced by the ratio c+2 /c

−
2 . In our simulations, this

ratio was equal to 10, which implies a much slower de-polymerisation than
polymerisation, cross-links formation and polymer reorganisation, i.e. poros-
ity increases much faster than it decreases. This unsymmetrical response,
which is already apparent in the experimental data recast here, needs still to
be experimentally correlated with quantified (de-)polymerisation rates.

Figure 12 illustrates the physical interpretation of the different response
of L and P during and after the stretching cycle. This two variables control
the cell stiffness and the phase angle. During the stretch cyclte, resting length
and porosity both increase. When compressing back the tissue, the resting
length of the polymer structure is recovered, but porosity, characterised by
the cross-linking of filaments and cytoskeletal reorganisation decreases at
much slower pace, as indicated in Figures 12c and 12d. As porosity slowly
returns to the baseline value, the tissue stiffness and solid-like response is
also slowly recovered.

The evolution of porosity has been here described through a suitable law,
but without explicitly modelling the filaments and their interaction. From
the results reported here, more detailed models can be envisaged which may
include the interaction of the cellular fluid and solid content. Furthermore, we
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Figure 12: Schematic of the evolution of resting length L and porosity P . (a) Initial
configuration. (b) After stretching. Increase of L and P . (c) Just after stretching cycle.
Reduction of L, but with no reduction in P . (d) During recovering. Resting length as in
(b), but with reduced porosity.

have used simple linear elastic laws, which have been sufficient for simulating
the simulation process. Other more sophisticated laws can be employed for
including the observed softening [3, 37] or stiffening process [7, 9].
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the support of Universitat Politècnica de Catalunya (UPC) and Consorci Es-
cola Industrial de Barcelona (CEIB) through grant UPC-FPI 2012, and the
European Research Council under the European Community’s 7th Frame-
work Programme (FP7/2007-2013)/ERC Grant Agreement No. 240487. XT
acknowledges the support of the European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement 616480, the Spanish Ministry of Economy and Competitiveness
(BFU2012-38146), and the Generalitat de Catalunya (2014-SGR-927).

22



Appendix A. Time discretisation

The time discretisation of the evolution laws in (13) and (14) using
wighted time discretisation with a paramteter θ [36]:

Lijn+1 = Lijn + ∆tγ0P
ij
n+θ(l

ij
n+θ − L

ij
n+θ),

P ij
n+1 = P ij

n + ∆tc±2

(
P0 −

P ij
n+θ

(Lijn+θ/L
ij
0 )c3

)
with (•)n+θ = (1 − θ)(•)n + θ(•)n+1. At each time-step tn+1, the set of
unknowns xn+1 = {x1

n+1, . . . ,x
N
n+1}, Pn+1 = {P 1

n+1, . . . , P
Ne
n+1} and Ln+1 =

{L1
n+1, . . . , L

Ne} may be found by solving the following system of equations,

f(xn+1, Ln+1, Pn+1) = 0

with

f(xn+1, Ln+1, Pn+1) =
∑

j k
1

Lijn+1

(
1− c1

P ijn+1−P0

P0

)
εe,ijn+1e

ij
n+1, i = 1, . . . , N

Lijn+1 − Lijn −∆tγP ij
n+θ(l

ij
n+θ − L

ij
n+θ), ij = 1, . . . , Ne

P ij
n+1 − P ij

n −∆tc±2

(
P0 −

P ijn+θ

(Lijn+θ/L0)
c3

)
, ij = 1, . . . , Ne

 (A.1)

Appendix B. Static condensation

The solution of the system of equations in (A.1) may be found by using
a full Newton-Raphson method. In this case, at each iteration k, the system
of linear equations read,

Kk


δx
δL
δP

 = −


fx
fL
fP


k

n+1

(B.1)

The vectors fx, fL and fP denote the block of equations in vector f
related to the mechanical equilibrium and the evolutions laws for L and P .
The Jacobian matrix is decomposed as follows,

K =

 Kxx KxL KxP

KLx KLL KLP

KPx KPL KPP

 =


∂xfx ∂Lfx ∂Pfx
∂xfL ∂LfL ∂PfL
∂xfP ∂LfP ∂PfP

 (B.2)
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From the second and third block of rows in equation (B.1), the variables
δL and δP can be computed as follow,{

δL
δP

}
= −J−1LP

(
fLP +

[
KLx

KPx

]
δx

)
(B.3)

with JLP =

[
KLL KLP

KPL KPP

]
and fLP =

{
fL
fP

}
. Replacing the expression

in (B.3) back into (B.1), yields the following reduced system of equations:

K̂xδx = −f̂x (B.4)

where the vector f̂x and the Jacobian K̂x are given by,

f̂x = fx −
[
KxL Kxp

]
J−1LPfLP

K̂x = Kxx −
[
KxL Kxp

]
J−1LP

[
KLx

Kpx

]
.

(B.5)

The condensed system of equation in (B.4) can be now solved by Newton-
Raphson method. Note that since variables L and P are elemental, matrix
JLP is formed by Ne uncoupled matrices with dimensions 2×2, and therefore
the products in (B.5) are computationally cheap.
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