83,985 research outputs found

    On the changes in number and intensity of North Atlantic tropical cyclones

    Get PDF
    Bayesian statistical models were developed for the number of tropical cyclones and the rate at which these cyclones became hurricanes in the North Atlantic. We find that, controlling for the cold tongue index and the North Atlantic oscillation index, there is high probability that the number of cyclones has increased in the past thirty years; but the rate at which these storms become hurricanes appears to be constant. We also investigate storm intensity by measuring the distribution of individual storm lifetime in days, storm track length, and Emanuel's power dissiptation index. We find little evidence that the distribution of individual storm intensity is changing through time. Any increase in cumulative yearly storm intensity and potential destructiveness, therefore, is due to the increasing number of storms and not due to any increase in the intensity of individual storms.Comment: 24 pages, 9 figure

    Polar mesoscale cyclones in the northeast Atlantic: Comparing climatologies from ERA-40 and satellite imagery

    Get PDF
    Polar mesoscale cyclones over the subarctic are thought to be an important component of the coupled atmosphere–ocean climate system. However, the relatively small scale of these features presents some concern as to their representation in the meteorological reanalysis datasets that are commonly used to drive ocean models. Here polar mesocyclones are detected in the 40-Year European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis dataset (ERA-40) in mean sea level pressure and 500-hPa geopotential height, using an automated cyclone detection algorithm. The results are compared to polar mesocyclones detected in satellite imagery over the northeast Atlantic, for the period October 1993–September 1995. Similar trends in monthly cyclone numbers and a similar spatial distribution are found. However, there is a bias in the size of cyclones detected in the reanalysis. Up to 80% of cyclones larger than 500 km are detected in MSL pressure, but this hit rate decreases, approximately linearly, to ∼40% for 250-km-scale cyclones and to ∼20% for 100-km-scale cyclones. Consequently a substantial component of the associated air–sea fluxes may be missing from the reanalysis, presenting a serious shortcoming when using such reanalysis data for ocean modeling simulations. Eight maxima in cyclone density are apparent in the mean sea level pressure, clustered around synoptic observing stations in the northeast Atlantic. They are likely spurious, and a result of unidentified shortcomings in the ERA-40 data assimilation procedure

    Ubiquitous rotating network magnetic fields and EUV cyclones in the quiet Sun

    Full text link
    We present the {\it Solar Dynamics Observatory} (SDO) Atmospheric Imaging Assembly (AIA) observations of EUV cyclones in the quiet Sun. These cyclones are rooted in the Rotating Network magnetic Fields (RNFs). Such cyclones can last several to more than ten hours, and, at the later phase, they are found to be associated with EUV brightenings (microflares) and even EUV waves. SDO Helioseismic and Magnetic Imager (HMI) observations show an ubiquitous presence of the RNFs. Using HMI line-of-sight magnetograms on 2010 July 8, we find 388 RNFs in an area of 800×\times980 square arcseconds near the disk center where no active region is present. The sense of rotation shows a weak hemisphere preference. The unsigned magnetic flux of the RNFs is about 4.0×1021\times10^{21} Mx, or 78% of the total network flux. These observational phenomena at small scale reported in this letter are consistent with those at large scale in active regions. The ubiquitous RNFs and EUV cyclones over the quiet Sun may suggest an effective way to heat the corona.Comment: 13 pages, 5 figures; accepted for publication in ApJ

    The 27–year decline of coral cover on the Great Barrier Reef and its causes

    Get PDF
    This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef.The world’s coral reefs are being degraded, and the need to reduce local pressures to offset the effects of increasing global pressures is now widely recognized. This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef. Based on the world’s most extensive time series data on reef condition (2,258 surveys of 214 reefs over 1985–2012), we show amajor decline in coral cover from 28.0%to 13.8% (0.53%y−1), a loss of 50.7% of initial coral cover. Tropical cyclones, coral predation by crown-of-thorns starfish (COTS), and coral bleaching accounted for 48%, 42%,and 10%of the respective estimated losses,amounting to 3.38% y−1 mortality rate. Importantly, the relatively pristine northern region showed no overall decline. The estimated rate of increase in coral cover in the absence of cyclones, COTS, and bleaching was 2.85%y−1, demonstrating substantial capacity for recovery of reefs. In the absence of COTS, coral cover would increase at 0.89% y−1, despite ongoing losses due to cyclones and bleaching. Thus, reducing COTS populations, by improvingwater quality and developing alternative control measures, could prevent further coral decline and improve the outlook for the Great Barrier Reef. Such strategies can, however, only be successful if climatic conditions are stabilized, as losses due to bleaching and cyclones will otherwise increase. Image: Wibble_Roisin / flick

    Two-year observations of the Jupiter polar regions by JIRAM on board Juno

    Get PDF
    We observed the evolution of Jupiter's polar cyclonic structures over two years between February 2017 and February 2019, using polar observations by the Jovian InfraRed Auroral Mapper, JIRAM, on the Juno mission. Images and spectra were collected by the instrument in the 5‐μm wavelength range. The images were used to monitor the development of the cyclonic and anticyclonic structures at latitudes higher than 80° both in the northern and the southern hemispheres. Spectroscopic measurements were then used to monitor the abundances of the minor atmospheric constituents water vapor, ammonia, phosphine and germane in the polar regions, where the atmospheric optical depth is less than 1. Finally, we performed a comparative analysis with oceanic cyclones on Earth in an attempt to explain the spectral characteristics of the cyclonic structures we observe in Jupiter's polar atmosphere
    corecore