3,636 research outputs found

    Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes

    Full text link
    Cyclic, negacyclic and constacyclic codes are part of a larger class of codes called polycyclic codes; namely, those codes which can be viewed as ideals of a factor ring of a polynomial ring. The structure of the ambient ring of polycyclic codes over GR(p^a,m) and generating sets for its ideals are considered. Along with some structure details of the ambient ring, the existance of a certain type of generating set for an ideal is proven.Comment: arXiv admin note: text overlap with arXiv:0906.400

    The Permutation Groups and the Equivalence of Cyclic and Quasi-Cyclic Codes

    Full text link
    We give the class of finite groups which arise as the permutation groups of cyclic codes over finite fields. Furthermore, we extend the results of Brand and Huffman et al. and we find the properties of the set of permutations by which two cyclic codes of length p^r can be equivalent. We also find the set of permutations by which two quasi-cyclic codes can be equivalent

    Self-Dual and Complementary Dual Abelian Codes over Galois Rings

    Get PDF
    Self-dual and complementary dual cyclic/abelian codes over finite fields form important classes of linear codes that have been extensively studied due to their rich algebraic structures and wide applications. In this paper, abelian codes over Galois rings are studied in terms of the ideals in the group ring GR(pr,s)[G]{\rm GR}(p^r,s)[G], where GG is a finite abelian group and GR(pr,s){\rm GR}(p^r,s) is a Galois ring. Characterizations of self-dual abelian codes have been given together with necessary and sufficient conditions for the existence of a self-dual abelian code in GR(pr,s)[G]{\rm GR}(p^r,s)[G]. A general formula for the number of such self-dual codes is established. In the case where gcd(G,p)=1\gcd(|G|,p)=1, the number of self-dual abelian codes in GR(pr,s)[G]{\rm GR}(p^r,s)[G] is completely and explicitly determined. Applying known results on cyclic codes of length pap^a over GR(p2,s){\rm GR}(p^2,s), an explicit formula for the number of self-dual abelian codes in GR(p2,s)[G]{\rm GR}(p^2,s)[G] are given, where the Sylow pp-subgroup of GG is cyclic. Subsequently, the characterization and enumeration of complementary dual abelian codes in GR(pr,s)[G]{\rm GR}(p^r,s)[G] are established. The analogous results for self-dual and complementary dual cyclic codes over Galois rings are therefore obtained as corollaries.Comment: 22 page
    corecore