3,464 research outputs found

    Solving the kernel perfect problem by (simple) forbidden subdigraphs for digraphs in some families of generalized tournaments and generalized bipartite tournaments

    Full text link
    A digraph such that every proper induced subdigraph has a kernel is said to be \emph{kernel perfect} (KP for short) (\emph{critical kernel imperfect} (CKI for short) resp.) if the digraph has a kernel (does not have a kernel resp.). The unique CKI-tournament is C→3\overrightarrow{C}_3 and the unique KP-tournaments are the transitive tournaments, however bipartite tournaments are KP. In this paper we characterize the CKI- and KP-digraphs for the following families of digraphs: locally in-/out-semicomplete, asymmetric arc-locally in-/out-semicomplete, asymmetric 33-quasi-transitive and asymmetric 33-anti-quasi-transitive TT3TT_3-free and we state that the problem of determining whether a digraph of one of these families is CKI is polynomial, giving a solution to a problem closely related to the following conjecture posted by Bang-Jensen in 1998: the kernel problem is polynomially solvable for locally in-semicomplete digraphs.Comment: 13 pages and 5 figure

    The conjugacy problem for automorphism groups of countable homogeneous structures

    Get PDF
    We consider the conjugacy problem for the automorphism groups of a number of countable homogeneous structures. In each case we find the precise complexity of the conjugacy relation in the sense of Borel reducibility

    Complete Acyclic Colorings

    Full text link
    We study two parameters that arise from the dichromatic number and the vertex-arboricity in the same way that the achromatic number comes from the chromatic number. The adichromatic number of a digraph is the largest number of colors its vertices can be colored with such that every color induces an acyclic subdigraph but merging any two colors yields a monochromatic directed cycle. Similarly, the a-vertex arboricity of an undirected graph is the largest number of colors that can be used such that every color induces a forest but merging any two yields a monochromatic cycle. We study the relation between these parameters and their behavior with respect to other classical parameters such as degeneracy and most importantly feedback vertex sets.Comment: 17 pages, no figure

    Alternating Hamiltonian cycles in 22-edge-colored multigraphs

    Full text link
    A path (cycle) in a 22-edge-colored multigraph is alternating if no two consecutive edges have the same color. The problem of determining the existence of alternating Hamiltonian paths and cycles in 22-edge-colored multigraphs is an NP\mathcal{NP}-complete problem and it has been studied by several authors. In Bang-Jensen and Gutin's book "Digraphs: Theory, Algorithms and Applications", it is devoted one chapter to survey the last results on this topic. Most results on the existence of alternating Hamiltonian paths and cycles concern on complete and bipartite complete multigraphs and a few ones on multigraphs with high monochromatic degrees or regular monochromatic subgraphs. In this work, we use a different approach imposing local conditions on the multigraphs and it is worthwhile to notice that the class of multigraphs we deal with is much larger than, and includes, complete multigraphs, and we provide a full characterization of this class. Given a 22-edge-colored multigraph GG, we say that GG is 22-M\mathcal{M}-closed (resp. 22-NM\mathcal{NM}-closed)} if for every monochromatic (resp. non-monochromatic) 22-path P=(x1,x2,x3)P=(x_1, x_2, x_3), there exists an edge between x1x_1 and x3x_3. In this work we provide the following characterization: A 22-M\mathcal{M}-closed multigraph has an alternating Hamiltonian cycle if and only if it is color-connected and it has an alternating cycle factor. Furthermore, we construct an infinite family of 22-NM\mathcal{NM}-closed graphs, color-connected, with an alternating cycle factor, and with no alternating Hamiltonian cycle.Comment: 15 pages, 20 figure
    • …
    corecore