18,579 research outputs found

    On graphs of defect at most 2

    Get PDF
    In this paper we consider the degree/diameter problem, namely, given natural numbers {\Delta} \geq 2 and D \geq 1, find the maximum number N({\Delta},D) of vertices in a graph of maximum degree {\Delta} and diameter D. In this context, the Moore bound M({\Delta},D) represents an upper bound for N({\Delta},D). Graphs of maximum degree {\Delta}, diameter D and order M({\Delta},D), called Moore graphs, turned out to be very rare. Therefore, it is very interesting to investigate graphs of maximum degree {\Delta} \geq 2, diameter D \geq 1 and order M({\Delta},D) - {\epsilon} with small {\epsilon} > 0, that is, ({\Delta},D,-{\epsilon})-graphs. The parameter {\epsilon} is called the defect. Graphs of defect 1 exist only for {\Delta} = 2. When {\epsilon} > 1, ({\Delta},D,-{\epsilon})-graphs represent a wide unexplored area. This paper focuses on graphs of defect 2. Building on the approaches developed in [11] we obtain several new important results on this family of graphs. First, we prove that the girth of a ({\Delta},D,-2)-graph with {\Delta} \geq 4 and D \geq 4 is 2D. Second, and most important, we prove the non-existence of ({\Delta},D,-2)-graphs with even {\Delta} \geq 4 and D \geq 4; this outcome, together with a proof on the non-existence of (4, 3,-2)-graphs (also provided in the paper), allows us to complete the catalogue of (4,D,-{\epsilon})-graphs with D \geq 2 and 0 \leq {\epsilon} \leq 2. Such a catalogue is only the second census of ({\Delta},D,-2)-graphs known at present, the first being the one of (3,D,-{\epsilon})-graphs with D \geq 2 and 0 \leq {\epsilon} \leq 2 [14]. Other results of this paper include necessary conditions for the existence of ({\Delta},D,-2)-graphs with odd {\Delta} \geq 5 and D \geq 4, and the non-existence of ({\Delta},D,-2)-graphs with odd {\Delta} \geq 5 and D \geq 5 such that {\Delta} \equiv 0, 2 (mod D).Comment: 22 pages, 11 Postscript figure
    corecore