3,690 research outputs found

    Evolutionary game dynamics of controlled and automatic decision-making

    Full text link
    We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model where agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible, and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions where having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition, and demonstrate necessary conditions for the rise and fall of rationality.Comment: 9 pages, 7 figure

    Safety management theory and the military expeditionary organization: A critical theoretical reflection

    Get PDF
    Management of safety within organizations has become a key topic within safety science. Theorizing on this subject covers a diverse pallet of concepts such as “resilience” and “safety management systems”. Recent studies indicate that safety management theory has deficiencies. Our interpretation of these deficiencies is that much confusion originates from the issue that crucial meta-theoretical assumptions are mostly implicit or applied inconsistently. In particular, we argue that these meta-theoretical assumptions are of a systems theoretical nature. Therefore, we provide a framework that will be able to explicate and reflect on systems theoretical assumptions. With this framework, we analyze the ability of two frequently used safety management theories to tackle the problem of managing safety of Dutch military expeditionary organizations. This paper will show that inconsistent and implicit application of systems theoretical assumptions in these safety management theories results in problems to tackle such a practical problem adequately. We conclude with a reflection on the pros and cons of our framework. Also, we suggest particular meta-theoretical aspects that seem to be essential for applying safety management theory to organizations

    Chore division on a graph

    Get PDF
    The paper considers fair allocation of indivisible nondisposable items that generate disutility (chores). We assume that these items are placed in the vertices of a graph and each agent's share has to form a connected subgraph of this graph. Although a similar model has been investigated before for goods, we show that the goods and chores settings are inherently different. In particular, it is impossible to derive the solution of the chores instance from the solution of its naturally associated fair division instance. We consider three common fair division solution concepts, namely proportionality, envy-freeness and equitability, and two individual disutility aggregation functions: additive and maximum based. We show that deciding the existence of a fair allocation is hard even if the underlying graph is a path or a star. We also present some efficiently solvable special cases for these graph topologies

    Truthful Assignment without Money

    Full text link
    We study the design of truthful mechanisms that do not use payments for the generalized assignment problem (GAP) and its variants. An instance of the GAP consists of a bipartite graph with jobs on one side and machines on the other. Machines have capacities and edges have values and sizes; the goal is to construct a welfare maximizing feasible assignment. In our model of private valuations, motivated by impossibility results, the value and sizes on all job-machine pairs are public information; however, whether an edge exists or not in the bipartite graph is a job's private information. We study several variants of the GAP starting with matching. For the unweighted version, we give an optimal strategyproof mechanism; for maximum weight bipartite matching, however, we show give a 2-approximate strategyproof mechanism and show by a matching lowerbound that this is optimal. Next we study knapsack-like problems, which are APX-hard. For these problems, we develop a general LP-based technique that extends the ideas of Lavi and Swamy to reduce designing a truthful mechanism without money to designing such a mechanism for the fractional version of the problem, at a loss of a factor equal to the integrality gap in the approximation ratio. We use this technique to obtain strategyproof mechanisms with constant approximation ratios for these problems. We then design an O(log n)-approximate strategyproof mechanism for the GAP by reducing, with logarithmic loss in the approximation, to our solution for the value-invariant GAP. Our technique may be of independent interest for designing truthful mechanisms without money for other LP-based problems.Comment: Extended abstract appears in the 11th ACM Conference on Electronic Commerce (EC), 201

    Network-Based Vertex Dissolution

    Get PDF
    We introduce a graph-theoretic vertex dissolution model that applies to a number of redistribution scenarios such as gerrymandering in political districting or work balancing in an online situation. The central aspect of our model is the deletion of certain vertices and the redistribution of their load to neighboring vertices in a completely balanced way. We investigate how the underlying graph structure, the knowledge of which vertices should be deleted, and the relation between old and new vertex loads influence the computational complexity of the underlying graph problems. Our results establish a clear borderline between tractable and intractable cases.Comment: Version accepted at SIAM Journal on Discrete Mathematic
    corecore