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NETWORK-BASED VERTEX DISSOLUTION∗

RENÉ VAN BEVERN† , ROBERT BREDERECK† , JIEHUA CHEN† , VINCENT FROESE† ,
ROLF NIEDERMEIER† , AND GERHARD J. WOEGINGER‡

Abstract. We introduce a graph-theoretic vertex dissolution model that applies to a number of
redistribution scenarios, such as gerrymandering in political districting or work balancing in an online
situation. The central aspect of our model is the deletion of certain vertices and the redistribution of
their load to neighboring vertices in a completely balanced way. We investigate how the underlying
graph structure, the knowledge of which vertices should be deleted, and the relation between old
and new vertex loads influence the computational complexity of the underlying graph problems. Our
results establish a clear borderline between tractable and intractable cases.

Key words. computational complexity analysis, combinatorial algorithms, economization, elec-
tion control, flow networks, matching, NP-hard problems, political districting, redistribution scenar-
ios
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1. Introduction. Motivated by applications in areas like political redistricting,
economization, and distributed systems, we introduce a class of graph modification
problems that we call network-based vertex dissolution. We are given an undirected
graph where each vertex carries a load consisting of discrete entities (e. g., voters,
tasks, data). These loads are balanced : all vertices carry the same load. Now a
certain number of vertices has to be dissolved ; that is, they are to be deleted from
the graph, and their loads are to be redistributed among their neighbors so that
afterwards all loads are balanced again.

In fact, our vertex dissolution problem comes in two flavors: Dissolution and
Biased Dissolution. Dissolution is the basic version described in the preceding
paragraph. Biased Dissolution is a variant that is motivated by gerrymandering in
the context of political districting. It is centered around a two-party scenario with two
types, A and B, of discrete entities. The goal is to find a redistribution that maximizes
the number of vertices in which the A-entities form a majority. See Section 2 for a
formal definition of these models.
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NETWORK-BASED VERTEX DISSOLUTION 889

Our focus lies on analyzing the computational complexity of network-based vertex
dissolution problems and on getting a good understanding of polynomial-time solvable
and NP-hard cases.

1.1. Three application scenarios. We discuss three example scenarios in de-
tail. The first two examples relate more to Biased Dissolution, while the third
example is closer to Dissolution.

Our first example comes from political districting, the process of setting electoral
districts. Let us consider a situation with two political parties (A and B) and an
electorate of voters that each support either A or B. The electorate is currently divided
into n districts, each consisting of precisely s individual voters. A district is won by
the party that receives the majority of votes in the district (for simplification, assume
that ties are resolved in favor of B). The local government performs an electoral
reform that reduces the number of districts, and the local governor (from party A)
is in charge of the redistricting. His goal is, of course, to let party A win as many
districts as possible while dissolving some districts and moving their voters to adjacent
districts. All resulting new districts should have equal size snew (where snew > s). In
the network-based vertex dissolution model, the districts and their neighborhoods are
represented by an undirected graph, where each vertex represents a district and each
edge indicates that two districts are adjacent.

Our second example concerns storage updates in parallel or distributed systems.
Consider a distributed storage array consisting of n storage nodes, each having a ca-
pacity of s storage units, of which some units are empty. As the prices on cheap hard
disk space are rapidly decreasing, the operators want to upgrade the storage capacity
of some nodes and to deactivate other nodes for saving energy and cost. As their
distributed storage concept takes full advantage only if all nodes have equal capacity,
they want to upgrade all (nondeactivated) nodes to the same capacity snew and move
capacities from deactivated nodes to nondeactivated neighboring nodes. In the result-
ing system, every nondeactivated node should only use half of its storage units. In
the network-based vertex dissolution model, storage nodes and their neighborhoods
are represented by an undirected graph, where each vertex represents a storage node
and each edge indicates that two nodes are neighbored in the array. The storage units
are modeled by our two-party variant, where empty units are represented by party A
and used units are represented by party B. Finally, one asks for redistribution such
that A-entities form a majority for every vertex.

Our third and last example concerns economization in a fairly general form. Con-
sider a company with n employees, each producing s units of a desirable good during
a month; for concreteness, let us say that each employee proves s theorems per month.
Now, due to the increasing support of automatic theorem provers, each employee is
able to prove snew theorems per month (snew > s). Hence, without lowering the total
number of proved theorems per month, some employees may be moved to a special task
force for improving automatic theorem provers: this will secure the company’s future
competitiveness in proving theorems, without decreasing the overall theorem output.
By company regulations, all theorem-proving employees have to be treated equally
and should have identical workloads. In the network-based vertex dissolution model,
employees correspond to vertices, and edges indicate that the corresponding employ-
ees are comparable in qualification and research interest. Employees in the special
task force are dissolved and disappear from the scene of action; their workload is to be
taken over by employees who are comparable in qualification and research interests.
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890 VAN BEVERN ET AL.

1.2. Related work. We are not aware of any previous work on our network-
based vertex dissolution problem. Our main inspiration came from the area of political
districting, in particular from gerrymandering [19, 26, 27], and from supervised region-
alization methods [11]. Of course, graph-theoretic models have been employed earlier
for (political) districting; for instance, Mehrota, Johnson, and Nemhauser [22] draw a
connection to graph partitioning, and Duque [10] and Maravalle and Simeone [21] use
graphs to model geographic information in the regionalization problem. These models
are tailored towards very specific applications and are mainly used for the purpose of
developing efficient heuristic algorithms, often relying on mathematical programming
techniques. The computational hardness of districting problems has been known for
quite some time [2].

Also related to our problem is constructive (or destructive) control by partitioning
voters, which was introduced by Bartholdi III, Tovey, and Trick [4]. In this scenario,
a chair wants to make some candidate become a winner (or a loser) by partitioning
the set of voters and applying some multistage voting protocol. The crucial difference
from our model is that there are no restrictions on the possible voter set partitions.
The computational complexity of control by voter partitioning has been investigated
for many voting rules (Faliszewski and Rothe [13] give an overview).

1.3. Remark on nomenclature. For ease of presentation, throughout the pa-
per we will adopt a political districting point of view on network-based vertex disso-
lution: the words districts and vertices are used interchangeably, and the entities in
districts are referred to as voters or supporters.

1.4. Contributions and organization of this paper. We propose two sim-
ple computational problems, Dissolution and Biased Dissolution, to make the
model for network-based vertex dissolution (Section 2) concrete. In the main body
of our work, we provide a variety of computational tractability and intractability re-
sults for both problems. We investigate relations of our new modeling to established
models like matchings and flow networks. Furthermore, we analyze how the structure
of the underlying graphs or how an in-advance fixing of which vertices should be dis-
solved influences the computational complexity (mainly in terms of polynomial-time
solvability versus NP-hard cases).

In Section 3, using flow networks, we show that Biased Dissolution is poly-
nomial-time solvable if the set of districts to be dissolved and the set of districts
to be won are both specified as part of the input. Furthermore, we show how our
new model generalizes established models such as partitioning graphs into stars and
perfect matchings.

Section 4 presents a complexity dichotomy for both Dissolution and Biased

Dissolution with respect to the old district size s and the increase Δs in district
size (that is, the difference between the new and the old district size). Dissolution

is polynomial-time solvable for s = Δs, and Biased Dissolution is polynomial-time
solvable for s = Δs = 1; all other cases are NP-complete.

Section 5 analyzes the complexity of Dissolution and Biased Dissolution for
various specially structured graphs, including planar graphs (NP-complete), cliques
(polynomial-time solvable), and graphs of bounded treewidth (linear-time solvable if
s and Δs are constant).

2. Formal setting. We start by introducing notation and formal definitions of
the technical terms that we use throughout the paper.
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NETWORK-BASED VERTEX DISSOLUTION 891

2.1. Graphs. Unless stated otherwise, we consider simple, undirected graphsG =
(V,E), where V is a set of n vertices and E ⊆ (

V
2

)
is a set of m edges. We use

(
V
2

)
to

denote the family of all size-two subsets of V . For a given graph G, we denote by V (G)
the set of vertices and by E(G) the set of edges of G. For a subset V ′ ⊆ V (G) of

vertices and a subset E′ ⊆ (E(G)∩ (
V ′

2

)
) of edges, the graph G′ = (V ′, E′) is called a

subgraph of G. We also say G contains G′. For a vertex subset V ′ ⊆ V , the induced

subgraph G[V ′] of G is defined as G[V ′] := (V ′, E ∩ (
V ′

2

)
).

A path is a graph P = (V,E) with vertex set V = {v1, v2, . . . , vn} and edge set
E = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}}. The vertices v1 and vn are the endpoints of
the path P . We say two vertices v and v′ in a graph G are connected if G contains
a path with the endpoints v and v′. A graph is connected if every two vertices
are connected. The connected components of a graph are its maximal connected
subgraphs. For a vertex v ∈ V , we denote by N(v) := {u ∈ V | {u, v} ∈ E} the
(open) neighborhood of v, that is, all vertices that are connected to v by an edge.

A t-star is a graph K1,t = (V,E) with vertex set V = {v1, v2, . . . , vt+1} and edge
set E = {{v1, vi} | 2 ≤ i ≤ t + 1}. The vertex v1 is called the center of the star. A
t-star partition of G is a partition {V1, . . . , Vn/(t+1)} of the vertex set V into subsets
of size t+ 1 such that each G[Vi] contains a t-star as a subgraph. Note that a 1-star
partition is a perfect matching.

2.2. Networks and flows. A flow network I∗ consists of a directed graph G∗ =
(V ∗, E∗), where V ∗ is the set of nodes and E∗ is a set of arcs, an arc capacity
function c∗ : E∗ → R+, and two distinguished nodes σ, τ ∈ V ∗ called the source and
the target of the network. An arc is an ordered pair of nodes from V ∗, and R+ is the
set of nonnegative real numbers.

A (σ, τ)-flow f : E∗ → R+ is an arc value function with f(u, v) ≥ 0 for all (u, v) ∈
E∗ such that

1. the capacity constraint is fulfilled, i.e.,

∀(u, v) ∈ E∗ : f(u, v) ≤ c(u, v), and

2. the conservation property is satisfied, i.e.,

∀u ∈ V ∗ \ {σ, τ} :
∑

(u,v)∈E∗
f(u, v) =

∑
(v,u)∈E∗

f(v, u).

We call f integer if all its values are integers. The value of f is
∑

(σ,u)∈E∗ f(σ, u).
Note that we distinguish between vertices in graphs and nodes in flow networks.

2.3. Dissolutions. Let G be an undirected graph representing n districts. Let
s,Δs ∈ N+ be the district size and district size increase, respectively, where N+ is
the set of nonnegative integer numbers. For a subset V ′ ⊆ V (G) of districts, let

Z(V ′, G) := {(x, y) | x ∈ V ′ ∧ y ∈ V (G) \ V ′ ∧ {x, y} ∈ E(G)}
be the set of district pairs consisting of a district from V ′ and a neighbor that is not
from V ′. The central notion for our studies is that of a dissolution, which basically de-
scribes a valid movement of voters from dissolved districts into nondissolved districts.
The formal definition is as follows.

Definition 2.1 (dissolution). Let G be an undirected graph, let D ⊂ V (G)
be a subset of districts to dissolve, and let z : Z(D,G) → {0, . . . , s} be a function
that describes how many voters shall be moved from one district to its nondissolved
neighbors. Then, (D, z) is called an (s,Δs)-dissolutionfor G if
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892 VAN BEVERN ET AL.

n = 5

s = 2

Δs = 3

Fig. 1. An illustration of two (2, 3)-dissolutions. Small circles represent the voters. The graph
on the top shows a neighborhood graph of five districts, each district consisting of two voters. The
task is to dissolve three districts such that each remaining district contains five voters. The graphs
in the middle show two possible realizations of dissolutions. The graphs on the bottom show the two
corresponding outcomes. The arrows in the “middle graphs” point from the districts to be dissolved
to the “target districts,” and the white circle labels on the arrows represent the voters moved along
the arrows.

(a) no voter remains in any dissolved district:

∀v′ ∈ D :
∑

(v′,v)∈Z(D,G)

z(v′, v) = s, and

(b) the size of all remaining (nondissolved) districts increases by Δs:

∀v ∈ V \D :
∑

(v′,v)∈Z(D,G)

z(v′, v) = Δs.

Throughout this work, we use
• snew := s+Δs to denote the new district size,
• d := |D| = |V (G)| ·Δs/snew to denote the number of dissolved districts, and
• r := |V (G)| − d to denote the number of remaining, nondissolved districts.

We write dissolution instead of (s,Δs)-dissolution when s and Δs are clear from
the context. By definition, a dissolution ensures that the numbers of voters moving
between districts fulfill the given constraints on the district sizes, that is, the size of
each remaining district increases by Δs. Figure 1 gives an example illustrating two
possible (2, 3)-dissolutions for a 5-vertex graph.

Motivated from social choice application scenarios, we additionally assume that
each voter supports one of two parties, A and B. We then search for a dissolution
such that the number of remaining districts won by party A is maximized. Here, a
district is won by the party that is supported by a strict majority of the voters inside
the district. This yields the notion of a biased dissolution, which is defined as follows.

Definition 2.2 (biased dissolution). Let G be an undirected graph, and let
α : V (G) → {0, . . . , s} be an A-supporter distribution, where α(v) denotes the number
of A-supporters in district v ∈ V . Let (D, z) be an (s,Δs)-dissolution for G; that is,
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NETWORK-BASED VERTEX DISSOLUTION 893

n = 5

s = 3

Δs = 2

Fig. 2. An illustration of a 1-biased (3, 2)-dissolution (left) and a 2-biased (3, 2)-dissolution
(right). Black circles represent A-supporters, while white circles represent B-supporters. The graph
on the top shows a neighborhood graph of five districts, each district consisting of three voters. The
task is to dissolve two districts such that each remaining district contains five voters. The graphs
in the middle show two possible realizations of dissolutions. The graphs on the bottom show the two
corresponding outcomes. The arrows point from the districts to be dissolved to the “target districts”
and the black/white circle labels on the arrows indicate which kind of voters are moved along the
arrows.

properties (a) and (b) of Definition 2.1 are fulfilled. Let rα ∈ N be the minimum
number of districts that party A shall win after the dissolution and zα : Z(D,G) →
{0, . . . , s} be an A-supporter movement, where zα(v

′, v) denotes the number of A-
supporters moving from district v′ to district v. Finally, let Rα ⊆ V (G) \D be a size-
rα subset of districts. Then, (D, z, zα, Rα) is called an rα-biased (s,Δs)-dissolution
for (G,α) if

(a) a district does not receive more A-supporters from a dissolved district than the
total number of voters it receives from that district:

∀(v′, v) ∈ Z(D,G) : zα(v
′, v) ≤ z(v′, v),

(b) no A-supporters remain in any dissolved district:

∀v′ ∈ D :
∑

(v′,v)∈Z(D,G)

zα(v
′, v) = α(v′), and

(c) each district in Rα has a strict majority of A-supporters:

∀v ∈ Rα : α(v) +
∑

(v′,v)∈Z(D,G)

zα(v
′, v) >

s+Δs

2
.

We also say that a district wins if it has a strict majority of A-supporters, and loses
otherwise.

Figure 2 shows two biased dissolutions: one with rα = 1 and the other one with
rα = 2. We are now ready to formally state the definitions of the two computational
dissolution problems (in their decision versions) that we discuss in this work.
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Dissolution

Input: An undirected graph G = (V,E) and positive integers s and Δs.
Question: Is there an (s,Δs)-dissolution for G?

Biased Dissolution

Input: An undirected graph G = (V,E), positive integers s,Δs, rα, and an A-
supporter distribution α : V → {0, . . . , s}.

Question: Is there an rα-biased (s,Δs)-dissolution for (G,α)?

Note that Dissolution is equivalent to Biased Dissolution with rα = 0. As
we will see later, Dissolution and Biased Dissolution are NP-complete in general.
In this work, we additionally look into special cases and investigate what the causes
of intractability may be.

3. Relations to established models. In this section, we identify relations
of our model to established graph concepts like matchings, flow networks, or star
partitions. This will also be useful for proofs in later sections. In Section 3.1, we
show that Dissolution and Biased Dissolution instances where the roles of the
districts are already known can be translated into flow networks. In Section 3.2 we
show that dissolutions generalize star partitions and perfect matchings.

3.1. Flow networks. Sometimes the districts that are to be dissolved and the
districts that are to be won are not arbitrary but already determined beforehand.
For this case we show that Biased Dissolution can be modeled as a network flow
problem, which can be solved in polynomial time.

Theorem 3.1. Let (G, s,Δs, rα, α) be a Biased Dissolution instance, and
let D,Rα ⊂ V (G) be two disjoint fixed subsets of districts. The problem of deciding
whether (G,α) admits an rα-biased (s,Δs)-dissolution (D, z, zα, Rα) can be reduced in
linear time to a maximum flow problem with 2|V (G)|+2 nodes, 2|V (G)|+3|E(G)| arcs,
and maximum arc capacity max(s,Δs).

Proof. Denote the set of remaining districts by R, that is, R := V (G) \D. With
Rα ⊆ R given beforehand, we can compute how many A-supporters a district v ∈ Rα

needs from its neighboring dissolved districts in order to win after the dissolution.
With D also given beforehand, we can use a flow network with two nodes correspond-
ing to each district to compute an rα-biased (s,Δs)-dissolution.

To this end, we first remove all edges between two vertices from D or between
two vertices from R since only edges between D and R may be taken into account
for the dissolution. Doing this, we obtain a bipartite neighborhood graph with the
two disjoint vertex sets D = {d1, . . . , dk} and R = {r1, . . . , rn−k}. Second, we ob-
serve that, in order to let a district r ∈ R win after the dissolution, r needs at least
max{0, �(snew + 1)/2� − α(r)} additional A-supporters. Hence, we compute a “de-
mand” function κ : R → {0, . . . , �(snew + 1)/2�} for each nondissolved district r by
κ(r) := max{0, �(snew + 1)/2� − α(r)} if r ∈ Rα and κ(r) := 0 otherwise.

The idea now is to construct a flow network which models the movement of A-
supporters that are necessary for a district in Rα to win and models the movement
of the remaining voters necessary to end up with district size snew separately. More
precisely, we split each d ∈ D into a node dA, modeling the supply of A-supporters
from d, and into a node dB , modeling the supply of the B-supporters from d. Similarly,
we split each r ∈ R into a node rA, modeling the demand for A-supporters for r,
and into a node rAB , modeling the remaining demand for voters, that is, voters to
finally end up with district size snew. Now, following the constraints given by the
neighborhood graph, A-supporters may move in order to satisfy some demand for A-
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d1

d2

r1

r2

r3

σ τ

dA1

dB1

dA2

dB2

rA1

rAB
1

rA2

rAB
2

rA3

rAB
3

α(
d1
)

s−α(d1)

α(d2)

s−α(d
2 )

κ(r
1 )

Δs−κ(r1)

κ(r2)

Δs
−κ(

r2)

κ(r3)

Δ s
−κ

(r 3
)

Fig. 3. An illustration of the network flow construction. Left: the graph G of an instance of
Biased Dissolution with D = {d1, d2}. Right: the corresponding network flow. The capacities of
the arcs from dissolved nodes to nondissolved nodes are omitted for the sake of brevity.

supporters or in order to satisfy the general demand on voters. Clearly, B-supporters
may only move in order to satisfy the general demand on voters.

Formally, we construct a flow network I∗ = (G∗ = (V ∗, E∗), c∗, σ, τ) for our input
instance (G, s,Δs, rα, α) as follows (see Figure 3 for an illustration). The node set V ∗

in G∗ consists of a source node σ, a target node τ , two nodes dAi and dBi for each
district di ∈ D, and two nodes rAi and rAB

i for each district ri ∈ R. In total, V ∗ has
2|V |+ 2 nodes.

The arcs in E∗ are divided into three layers:

1. Arcs from the source node to all nodes corresponding to dissolved districts:
For each dissolved district di ∈ D, add to E∗ two arcs (σ, dAi ) and (σ, dBi )
with capacities c∗(σ, dAi ) = α(di) and c∗(σ, dBi ) = s− α(di).

2. Arcs from the nodes corresponding to dissolved districts to nodes correspond-
ing to nondissolved neighbored districts: For each dissolved district di ∈ D
and for each rj ∈ N(di) of its nondissolved neighbors, add to E∗ three arcs
(dAi , r

A
j ), (di, r

AB
j ), and (dBi , r

AB
j ) with capacities c∗(dAi , r

A
j ) = c∗(dAi , r

AB
j ) =

α(di) and c∗(dBi , r
AB
j ) = s− α(di).

3. Arcs from all nondissolved nodes to the target node: For each nondissolved
district rj ∈ R, add to E∗ two arcs (rAj , τ) and (rAB

j , τ) with capacities

c∗(rAj , τ) = κ(rj) and c∗(rAB
j , τ) = Δs − κ(rj).

This completes the description of the flow network construction.

We show that there is an rα-biased (s,Δs)-dissolution (D, z, zα, Rα) for (G,α) if
and only if the constructed flow network I∗ has a (σ, τ)-flow of value s · |D|.

For the “only if” part, suppose that there is a dissolution (D, z, zα, Rα) for (G,α).
Construct a (σ, τ)-flow f : E∗ → R by defining f(σ, dAi ) := c∗(σ, dAi ) and f(σ, dBi ) :=
c∗(σ, dBi ), where di is a dissolved district. Then, define f(rAj , τ) := c∗(rAj , τ) and

f(rAB
j , τ) := c∗(rAB

j , τ), where rj is a nondissolved district. Note that by definition

of the network, this means that f(σ, dAi ) = α(di) and f(σ, dBi ) = s− α(di), where di
is a dissolved district, as well as that f(rAj , τ) = κ(rj) and f(rAB

j , τ) = Δs − κ(rj),
where rj is a nondissolved district. It remains to define the values of f for the arcs in
layer 2. For each dissolved district di ∈ D and for each rj ∈ N(di) of its nondissolved
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dAi rAj

rAB
j

zα(di, rj)

0

dAi rAj

rAB
j

δ
zα(di , rj )− δ

Fig. 4. Two cases of setting the flow values for arcs outgoing from dAi nodes. Left: The sum of

the flow through arcs to rAj is at most κ(rj) − zα(di, rj). Right: The sum of the flow through arcs

to rAj is κ(rj)− δ, where 0 ≤ δ < zα(di, rj).

neighbors, define f(dBi , r
AB
j ) := z(di, rj) − zα(di, rj). To also define the flow values

for arcs outgoing from a node dAi , 1 ≤ i ≤ k, we use the following procedure, where we
remember in each step the total amount u(rAj ) of flow going into rAj . We initialize u

by setting u(rAj ) := 0 for each rj ∈ R. Now, process all pairs (di, rj) with di ∈ D
and rj ∈ N(di) in an arbitrary ordering, where the following two cases may occur
(illustrated in Figure 4).

Case 1. If u(rAj ) + zα(di, rj) ≤ κ(rj), then increase u(rAj ) by zα(di, rj) and set

f(dAi , r
A
j ) := zα(di, rj) and f(dAi , r

AB
j ) := 0.

Case 2. If u(rAj ) + δ = κ(rj) for some nonnegative integer δ < zα(di, rj), then

increase u(rAj ) by δ and set f(dAi , r
A
j ) := δ and f(dAi , r

AB
j ) := zα(di, rj)− δ.

Now, observe that by our definition of f the flow value is
∑

(s,x)∈E∗ f(s, x) = s·|D|.
It remains to show that f is valid. By our definition of f , the flow value of each arc
does not exceed its capacity. For each di ∈ D, the conservation property for the
nodes dAi and dBi is fulfilled by property (a) of Definition 2.1 and property (b) of
Definition 2.2 of the biased dissolution. For each rj ∈ R, the conservation property
for the node rAj is fulfilled by our definition of f (which ensures that the ingoing
flow is at most κ(rj)) and by property (c) of Definition 2.2 of the biased dissolution
(which ensures that the ingoing flow is at least κ(rj)). The conservation property
for the node rAB

j is fulfilled by properties (a) and (c) of Definition 2.2 of the biased
dissolution (and the way we defined f).

For the “if” part, suppose that f is a (σ, τ)-flow for I∗ with value s · |D|. Let
zα : Z(D,G) → {0, . . . , s} and z : Z(D,G) → {0, . . . , s} be two functions with
values zα(di, rj) := f(dAi , r

A
j ) + f(dAi , r

AB
j ) and z(di, rj) := zα(di, rj) + f(dBi , r

AB
j ).

One can verify that (D, z, zα, Rα) is an rα-biased (s,Δs)-dissolution for (G,α) as
follows: Property (a) of Definition 2.1 is fulfilled since the total flow going over dAi
and dBi has value exactly s. Property (b) of Definition 2.1 is fulfilled since the total
flow going over rAj and rAB

j has value exactly Δs. Property (a) of Definition 2.2 is
fulfilled by our definition of z and zα. Property (b) of Definition 2.2 is fulfilled since
the total flow going over dAi is α(di). Property (c) of Definition 2.2 is fulfilled since
the total flow going over rAj is κ(rj).

The following corollary shows that plain dissolutions can be modeled using a much
simpler flow network in comparison to biased dissolutions. In particular, all capacity
values are either s or Δs—a property which will be important in later proofs.

Corollary 3.2. Let G be a graph, and let D ⊂ V (G) be a subset of vertices. If
there exists an (s,Δs)-dissolution (D, z) for G, then it can be found by computing the
maximum flow in a network with |V (G)| + 2 nodes and |E(G)|+ 2|V (G)| arcs where
all capacities are either s or Δs.

Proof. If the districts to dissolve are known and we search only for a dissolution
(in other words, rα = 0), then the flow network used to compute a dissolution from
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σ

D
V (G) \D

τ

s

s

s

s

s
s

s

s

s

Δ
s

Δs

Δs

Δs

Fig. 5. Flow network for Dissolution when the set D of districts to dissolve is known.

the proof of Theorem 3.1 basically reduces to a much simpler flow network. For this
case, we can assume that Rα = ∅ and α(v) = 0 for all v ∈ V (G), remove all arcs with
capacity zero, and finally also remove nodes without a directed path from the source
or to the sink.

Doing this, we end up with the following: We have a source σ and a sink τ and two
additional layers of nodes: the first layer contains one node for each vertex from D,
and the second layer contains one node for each vertex from V (G) \D. There is an
arc from the source σ to each node in the first layer with capacity s and an arc from
each node in the second layer to the sink τ with capacity Δs. Finally, there is an arc
of capacity s from a node in the first layer to a node in the second layer if and only
if the corresponding vertices in the neighborhood graph G are adjacent. See Figure 5
for an illustration.

Contrasting the polynomial-time solvability whenD and Rα are known, we obtain
NP-completeness for Biased Dissolution once at least one of the two setsD and Rα

is unknown. Dissolution is the special case of Biased Dissolution with Rα = ∅,
and we will see in Section 4.1 that Dissolution is NP-complete for the case of
s �= Δs (Theorem 4.3). This means that Biased Dissolution is NP-hard even if
the set Rα is known to be empty. For the case that only the set D of dissolved
districts is given beforehand, it remains to decide how many A-supporters are moved
to a certain nondissolved district. We will see in Section 4.2, however, that in the
hardness construction for Theorem 4.6 it is already fixed which districts are to be
dissolved. This means that Biased Dissolution is NP-hard even if the set D of
dissolved districts is given beforehand. Summarizing, Biased Dissolution is NP-
hard even if either the set D of districts to dissolve or the set Rα of districts to win
is known.

With the help of the above flow network construction from Theorem 3.1, we
can design an exact algorithm for Biased Dissolution that runs in polynomial
time when the number of districts is a constant. Since the degree of the polynomial
does not depend on the number of districts, this means fixed-parameter tractability
with respect to the number of districts (see [9, 14, 24] for details on fixed-parameter
tractability).

Corollary 3.3. Any instance (G, s,Δs, α) of Biased Dissolution can be
solved in O(3|V (G)| · (max(s,Δs) · |V (G)| · |E(G)| + |V (G)|3)) time.

Proof. Since each district will either be dissolved, won, or lost, there are at most
3|V (G)| different ways to fix the roles of all |V (G)| districts. In each case, we can
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898 VAN BEVERN ET AL.

construct a flow network with O(|V (G)|) nodes and maximum capacity max(s,Δs) in
O(max(s,Δs) · |V (G)| · |E(G)|) time and compute the maximum flow (Theorem 3.1)
to solve Biased Dissolution. Hence, by using an O(|V (G)|3)-time maximum flow
algorithm we solve Biased Dissolution in O(3|V (G)|(max(s,Δs) · |V (G)| · |E(G)|+
|V (G)|3)) time.

3.2. Relation to star partition and matching. In this subsection, we analyze
how dissolutions relate to star partitioning and matching. If Δs = 1, then each
nondissolved district receives exactly one additional voter from one of its neighboring
districts. Each dissolved district has to move exactly one voter to each of s neighboring
districts. Hence, it is easy to see that a graph has an (s, 1)-dissolution if and only if
it has an s-star partition.

Using the flow construction from Corollary 3.2, we can even show that this equiv-
alence to star partition generalizes to the case that s is an integer multiple of any Δs.

Proposition 3.4. There exists a (t ·Δs,Δs)-dissolution for an undirected graph
G if and only if G has a t-star partition.

Proof. If G = (V,E) can be partitioned into t-stars, then it is easy to see that
there is a (t ·Δs,Δs)-dissolution for G: Let C = {c1, . . . , cd} ⊂ V be the set of t-
star centers, and let Li ⊂ V, 1 ≤ i ≤ d, be the set of leaves of the ith star. Define
function z : Z(C,G) → {0, . . . , t ·Δs} so that, for all (ci, l) ∈ Z(C,G), z(ci, l) := Δs if
l ∈ Li and z(ci, l) := 0 otherwise. Obviously, (C, z) is a (t ·Δs,Δs)-dissolution for G.

Now, let (D, z) be a (t ·Δs,Δs)-dissolution for G. We show that G can be parti-
tioned into t-stars with D being the t-star centers. To this end, consider the network
flow constructed in Corollary 3.2 and modify the network as follows. For each arc,
divide its capacity by Δs. Clearly, if there is a flow with value |D| ·t ·Δs = |V \D| ·Δs,
then the modified network has a flow with value |D| · t = |V \D|. As all capacities are
integers, there exists a maximum flow f such that for each arc a it holds that f(a) is
integer [1]. Hence, a partition of G into t-stars consists of one star for each vi ∈ D
such that vi is the star center connected to its leaves Li = {u | f(vi, u) = 1}.

Since a t-star partition with t = 1 is a perfect matching, we obtain the following
corollary.

Corollary 3.5. There exists an (s,s)-dissolution for an undirected graph G if
and only if G has a perfect matching.

4. Complexity dichotomy with respect to district sizes. In this section,
we study the computational complexity of Dissolution and Biased Dissolution

with respect to the relation of the district size s to the district size increase Δs. We
show that Dissolution is polynomial-time solvable if s = Δs, and NP-complete
otherwise (Theorem 4.3). Biased Dissolution is polynomial-time solvable if s =
Δs = 1, and NP-complete otherwise (Theorem 4.6).

We start by showing a useful structural observation for dissolutions. More pre-
cisely, we observe a symmetry concerning the district size s and the district size
increase Δs in the sense that exchanging their values yields an equivalent instance
of Dissolution. Intuitively, the idea behind the following lemma is that the roles
of dissolved and nondissolved districts in a given (s,Δs)-dissolution can in fact be
exchanged by “reversing” the movement of voters to obtain a (Δs, s)-dissolution.

Lemma 4.1. There exists an (s,Δs)-dissolution for an undirected graph G if and
only if there exists a (Δs, s)-dissolution for G.

Proof. Let (D, z) be an (s,Δs)-dissolution for G. We show that (V (G) \D, z′),
where z′ is defined by z′(x, y) := z(y, x) is a (Δs, s)-dissolution for G: First, observe
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that the domain of z′ is correct:

Z(V (G) \D,G) = {(x, y) | x ∈ V (G) \D ∧ y ∈ V (G) \ (V (G) \D)

∧ {x, y} ∈ E(G))}
= {(x, y) | x ∈ V (G) \D ∧ y ∈ D ∧ {x, y} ∈ E(G))}.

Second, observe that (V (G) \D, z′) fulfills all properties of Definition 2.1: Property
(a) is fulfilled for (V (G) \ D, z′) if and only if property (b) is fulfilled for (D, z),
and property (b) is fulfilled for (V (G) \ D, z′) if and only if property (a) is fulfilled
for (D, z).

4.1. Dissolution. In this subsection, we show a P versus NP dichotomy of
Dissolution with respect to the district size s and the size increase Δs. Observe that
from Corollary 3.5 it directly follows that Dissolution is polynomial-time solvable
if s = Δs.

If s �= Δs, then Dissolution is NP-complete. We can use a result from number
theory to encode instances of the NP-complete Exact Cover by t-Sets problem
into instances of Dissolution.

Exact Cover by t-Sets

Input: A finite set X and a collection C of subsets of X of size t.
Question: Is there a subcollection C′ ⊆ C that partitions X , that is, each element

of X is contained in exactly one subset in C′?
Now, let us briefly recall some elementary number theory.

Lemma 4.2 (Bézout’s identity). Let a and b be two positive integers, and let
g be their greatest common divisor. Then, there exist two integers x and y with
ax+ by = g.

Moreover, x and y in Lemma 4.2 can be computed in polynomial time using the
extended Euclidean algorithm [7, Section 31.2]. Indeed, we can infer from Lemma 4.2
that any two integers x′ and y′ with x′ = ix+jb/g and y′ = iy−ja/g for some i, j ∈ Z
satisfy ax′ + by′ = ig. We will make use of this fact several times in the NP-hardness
proof of the following theorem.

Theorem 4.3. If s = Δs, then Dissolution is solvable in O(nω) time (where
ω is the matrix multiplication exponent); otherwise the problem is NP-complete.

Proof. First, Corollary 3.5 says that there is an (s, s)-dissolution if and only if
there is a perfect matching in G, which can be computed in O(nω) time with ω being
the smallest exponent such that matrix multiplication can be computed in O(nω)
time. Currently, the smallest known upper bound of ω is 2.3727 [28].

For the case s �= Δs, we show that Dissolution is NP-complete if s > Δs. Due to
Lemma 4.1, this also transfers to the cases where s < Δs. First, given a Dissolution

instance (G, s,Δs) and a function z : Z(D,G) → {0, . . . , s} where D ⊂ V (G), one can
check in polynomial time whether (D, z) is an (s,Δs)-dissolution. Thus, Dissolution

is in NP.

To show the NP-hardness result, we give a reduction from the NP-complete
Exact Cover by t-Sets [16] for t := (s + Δs)/g > 2, where g := gcd(s,Δs)
≤ Δs is the greatest common divisor of s and Δs.

Given an Exact Cover by t-Sets instance (X, C), we construct a Dissolution

instance (G, s,Δs) with a neighborhood graph G = (V,E) defined as follows: For each
element u ∈ X , add a clique Cu of properly chosen size q to G, and let vu denote
an arbitrary fixed vertex in Cu. For each subset S ∈ C, add a clique CS of properly
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v1 v2 v3 v4 v5 v6

CS1 CS2 CS3

Fig. 6. The constructed instance for t = 3.

chosen size r ≥ t to G and connect each vu for u ∈ S to a unique vertex in CS .
Figure 6 shows an example of the constructed neighborhood graph for t = 3.

Next, we explain how to choose the values of q and r. We set q = xq + yq, where
xq ≥ 0 and yq ≥ 0 are integers satisfying xqs − yqΔs = g. Such integers exist by
Lemma 4.2. The intuition behind this is as follows: Dissolving xq districts in Cu and
moving the voters to yq districts in Cu creates an overflow of exactly g voters, who
have to move out of Cu. Note that the only way to move voters into or out of Cu is
via district vu. Moreover, if the constructed instance (G, s,Δs) admits a dissolution,
then exactly xq districts in Cu are dissolved because dissolving more districts leads to
an overflow of at least g+s+Δs > s voters, which is more than vu can move, whereas
dissolving fewer districts yields a demand of at least s + Δs − g > Δs voters, which
is more than vu can receive. Thus, the district vu must be dissolved since there is an
overflow of g voters to move out of Cu, and this can only be done via district vu.

The value of r ≥ t is chosen in such a way that, for each subset S ∈ C and each
element u ∈ S, it is possible to move g voters from vu to CS (recall that vu must be
dissolved). In other words, we require CS to be able to receive in total t · g = s+Δs

voters in at least t nondissolved districts. Thus, we set r := xr + yr, where xr ≥ 0
and yr ≥ t are integers satisfying xrs − yrΔs = −(s + Δs). Again, since −(s + Δs)
is divisible by g, such integers exist by Lemma 4.2. It is thus possible to dissolve xr

districts in CS , moving the voters to the remaining yr districts in CS such that we
end up with a demand of s + Δs voters in CS . Note that the only other possibility
is to dissolve xr + 1 districts in CS in order to end up with a demand of zero voters.
In this case, no voters of any other districts connected to CS can move to CS . By
the construction of Cu, it is clear that it is also not possible to move any voters out
of CS because no vu can receive voters in any dissolution. Thus, if the constructed
instance (G, s,Δs) admits a dissolution, then either all or none of the districts vu
connected to some CS move g voters to CS .

We are now ready to show that G has a (s,Δs)-dissolution if and only if (X, C)
is a yes-instance of Exact Cover by t-Sets.

For the “only if” part, suppose that (X, C) is a yes-instance, that is, there exists
a partition C′ ⊆ C of X . We can thus dissolve xq districts in each Cu (including vu)
and move the voters such that all yq nondissolved districts receive exactly Δs voters.
This is always possible since Cu is a clique. If we do so, then, by construction, g
voters have to move out of each vu. Since C′ partitions X , each u ∈ X is contained in
exactly one subset S ∈ C′. We can thus move the g voters from each vu to CS . Now,
for each S ∈ C′, we dissolve any xr districts that are not adjacent to any vu, and for
the subsets in C \C′, we simply dissolve xr+1 arbitrary districts in the corresponding
cliques. As already discussed, each CS with xr dissolved districts receives t · g voters,D
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and each CS with xr +1 dissolved districts receives no voter. Thus, this in fact yields
an (s,Δs)-dissolution.

For the “if” part, assume that there exists an (s,Δs)-dissolution for G. As al-
ready discussed, every (s,Δs)-dissolution generates an overflow of g voters in each Cu

that has to be moved over vu to some district in CS . Furthermore, each CS either
receives g voters from all its adjacent vu or no voters at all. Therefore, the subsets S
corresponding to cliques CS that receive t · g voters form a partition of X , showing
that (X, C) is a yes-instance.

4.2. Biased dissolution. Because Dissolution is a special case of Biased

Dissolution, the NP-hardness results for s �= Δs transfer to Biased Dissolution.
It remains to see whether Biased Dissolution remains polynomial-time solvable
when s = Δs. Interestingly, this is true for s = Δs = 1, but Biased Dissolution

turns NP-hard when s = Δs ≥ 2.
To analyze the structure of dissolutions, we introduce the concept of the “edge set

used by a dissolution,” which we will use in several proofs. Let (D, z) be a dissolution
of a graph G. Let Ez ⊆ E(G) contain all edges {x, y} with (x, y) ∈ Z(D,G) and
z(x, y) > 0. Then, we call Ez the edge set used by the dissolution (D, z).

The following lemma shows that finding an rα-biased (1, 1)-dissolution essentially
corresponds to finding a maximum-weight perfect matching.

Lemma 4.4. Let (G = (V,E), s = 1, Δs = 1, rα, α) be a Biased Dissolution

instance. There is an rα-biased (1, 1)-dissolution for (G,α) if and only if there is a
perfect matching of weight at least rα in (G,w) with w({x, y}) := 1 if α(x) = α(y) = 1,
and w({x, y}) := 0 otherwise.

Proof. For the “only if” part, let (D, z, zα, Rα) be an rα-biased (1, 1)-dissolution
for (G,α). Then, the edge set Ez ⊆ E used by (D, z, zα, Rα) partitions G into 1-stars,
or in other words, Ez is a perfect matching for G (see Proposition 3.4). Note that a
nondissolved district can only win if it already contains an A-supporter and receives
one additional A-supporter. By the construction of w, this implies that the weight
of each edge that connects a winning district is 1 (i.e., for each e ∈ Ez it holds that
e ∩ Rα �= ∅ if and only if w(e) = 1). Since |Rα| ≥ rα, the perfect matching Ez has
weight at least rα.

For the “if” part, let E′ ⊆ E be a perfect matching of weight at least rα. By
the construction of w, E′ contains at least rα edges, each of which has weight 1.
Then, we construct an rα-biased (1, 1)-dissolution (D, z, zα, Rα) as follows. For each
edge {x, y} ∈ E′, arbitrarily add one of its endpoints, say x, to D and set z(x, y) := 1.
Furthermore, if α(x) = 1, then set zα(x, y) := 1. If w({x, y}) = 1, meaning that the
districts corresponding to x and y have an A-supporter each, then add y to Rα since
y wins after the dissolution. Finally, |Rα| ≥ rα since |E′| ≥ rα.

As we have already seen from Corollary 3.5, the edge set used by a (1, 1)-
dissolution is a perfect matching. This is useful for finding a polynomial-time algo-
rithm solving Biased Dissolution, exploiting that maximum-weight perfect match-
ings can be computed in polynomial time. Can we find similar useful characterizations
for rα-biased (s, s)-dissolutions for s > 1?

Already for (2, 2)-dissolutions, a characterization by the edge set used is not as
compact as for (1, 1)-dissolutions: The edge set used by a (2, 2)-dissolution for some
graph G corresponds to a partition of the graph into disjoint cycles of even length and
disjoint paths on two vertices. For the case of rα-biased (2, 2)-dissolution, one would
at least need some weights, and it is not clear how to find such a partition efficiently.
However, by appropriately setting α and rα, we can enforce that the edge set used by
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a length-two path

a length-four cycle

a length-six cycle

Fig. 7. Graphs induced by edge sets used by an rα-biased (2, 2)-dissolution. In order to have a
majority of A-supporters (black dots) in at least half of the new districts, each component must be
a cycle of length divisible by four.

any rα-biased (2, 2)-dissolution induce only cycles of lengths divisible by four: We let
each district have one A-supporter and one B-supporter (i.e., α : V → {1} for each
district v) and let rα := |V (G)|/4. Doing this we end up with a restricted two-factor
problem which was already studied in the literature [18].

L-Restricted Two Factor

Input: An undirected graph G = (V,E).
Question: Is there a two-factor E′ ⊆ E such that the number of vertices in each

connected component in (V,E′) belongs to L?

A two-factor of a graph G = (V,E) is a subset of edges E′ ⊆ E such that each
vertex in the subgraph G′ := (V,E′) has degree exactly two, that is, G′ contains only
disjoint cycles.

Lemma 4.5. Let G = (V,E) be an undirected graph with 4q vertices (q ∈ N).
Then, G has a two-factor E′ whose cycle lengths are all multiples of four if and only
if (G,α) admits a q-biased (2, 2)-dissolution with α(v) = 1 for all v ∈ V .

Proof. For the “only if” part, let E′ ⊆ E be an edge subset such that each
vertex in G′ := (V,E′) has degree two and G′ consists of disjoint cycles of lengths
divisible by four. We now construct a q-biased (2, 2)-dissolution (D, z, zα, Rα) for
(G,α). To this end, we start with D := ∅, Rα := ∅ and do the following for each
cycle c1c2 . . . c4lc1, l ≥ 1. For each number i with 1 ≤ i ≤ 2l, add c2i to D, and set
z(c2i, c2i−1) := z(c2i, c(2i+1) mod 4l) := 1. For each 1 ≤ i ≤ l, we set

zα(c4i−2, c4i−3) := 1, zα(c4i−2, c4i−1) := 0,

zα(c4i, c(4i+1) mod 4l) := 1, zα(c4i, c4i−1) := 0.

Doing this, every fourth vertex in each cycle receives two additional A-supporters (see
Figure 7 for an illustration of the corresponding dissolutions). It is easy to verify that
(D, z, zα, Rα) is indeed a q-biased (2, 2)-dissolution.

For the “if” part, let (D, z, zα, Rα) be a q-biased (2, 2)-dissolution for (G,α). Fur-
thermore, let Ez denote the edge set used by (D, z, zα, Rα). Each component C in
G[Ez ] is either a path of length two or a cycle of even length and consists of exactly
|V (C)|/2 dissolved and |V (C)|/2 nondissolved districts. Since each nondissolved dis-
trict needs at least two A-supporters in order to win and only |V (C)|/2 A-supporters
can be moved from the |V (C)|/2 dissolved districts, at most |V (C)|/4 districts can
win. With rα = q, this implies that in total exactly q districts must win. This can only
succeed if each component C is a cycle of length divisible by four (also see Figure 7
for an illustration).
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Now, we are ready to show that Biased Dissolution is NP-complete even for
constant values of s and Δs, except if s = Δs = 1, where it is solvable in polynomial
time.

Theorem 4.6. Biased Dissolution can be solved in O(n · (m+ n logn)) time
if s = Δs = 1; otherwise it is NP-complete.

Proof. For s = Δs = 1, Biased Dissolution reduces to computing a maximum-
weight perfect matching (see Lemma 4.4). This can be done in O(n · (m + n logn))
time [15].

It is easy to see that Biased Dissolution is in NP. Now, we show the NP-
hardness for s = Δs ≥ 2. For s = Δs = 2, observe that Lemma 4.5 implicitly
provides a polynomial-time reduction from the graph problem L-Restricted Two

Factor to Biased Dissolution with L ⊆ {3, . . . , |V |}.
Two-factors of graphs are computable in polynomial time [12]. However, L-

Restricted Two Factor is NP-hard if ({3, 4, . . . , |V |} \ L) � {3, 4} [18]. By
Lemma 4.5, (G = (V,E), L) with |V | = 4q and L = {4, 8, . . . , 4q} is a yes-instance of
L-Restricted Two Factor if and only if (G, 2, 2, q, α) with α(v) = 1 for all v ∈ V is
a yes-instance of Biased Dissolution. Since ({3, 4, . . . , |V |}\{4, 8, . . . , 4q}) � {3, 4}
for all q > 1, it follows that Biased Dissolution is NP-complete when s = Δs = 2.

For s = Δs ≥ 3, we show NP-hardness by a polynomial-time reduction from the
NP-complete Exact Cover by t-Sets for t ≥ 3 (see the corresponding definition
in Section 4.1). Given an Exact Cover by t-Sets instance (X, C) with |X | =
t · q elements and r := |C|, we construct a Biased Dissolution instance (G =
(V,E), t, t, rα, α).

To construct the graph G, we use the so-called t-element gadget. A t-element
gadget consists of a t-star where each leaf has an additional degree-one neighbor. We
call the degree-t vertex center district, the original star leaves inner districts, and the
additional degree-one vertices element districts. A 3-element gadget is illustrated in
Figure 8. Now, we add to the graph G the following:

• q t-element gadgets; we arbitrarily identify each element x ∈ X with exactly
one of the (q · t)-element districts that is denoted as vx in the following,

• for each subset Y ∈ C a set district vY , and
• r − q dummy districts.

Then, we connect each set district vY with each element district vx, x ∈ Y and
connect each dummy district with each set district. We set the number rα of winning
districts to (t+ 1) · q.

We now describe how many A-supporters each district contains (that is, the func-
tion α).

• The dummy district contains no A-supporters.
• Each set district contains exactly one A-supporter.
• For each t-element gadget, the center district contains no A-supporters, each
inner district contains exactly two A-supporters, and each element district
contains t A-supporters.

This concludes the construction which is illustrated for t = 3 in Figure 9.

Now, we show that (X, C) is a yes-instance of Exact Cover by t-Sets if and
only if the constructed Biased Dissolution instance (G, t, t, (t + 1)q, α) is a yes-
instance.

For the “only if” part, let C′ ⊆ C be a subcollection such that each element of X
is contained in exactly one subset of C′. A (t + 1)q-biased (t, t)-dissolution can be
constructed as follows. Dissolve each center district, and move one B-supporter to
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904 VAN BEVERN ET AL.

x x x x x x

Fig. 8. Left: A 3-element gadget. The only dissolution where A wins all districts requires
dissolving the top district and moving exactly one B-supporter from the top district to each neighbor.
Right: Gadget symbol in the construction.

x x x x x x x x x x x x x x x x x x

Fig. 9. Illustration of the construction for t = 3, r = 5, and q = 3.

each of its adjacent inner districts. Dissolve each element district, and move (t−1) A-
supporters to its uniquely determined adjacent inner district. For each element district
vx, x ∈ X , move the remaining A-supporter to the set district vY , Y ∈ C′, with x ∈ Y .
Since C′ partitions X , vY is uniquely determined. The set Rα of winning districts
consists of all inner districts and the set districts corresponding to the sets in C′. For
each dummy district vdummy, uniquely choose one of the set districts vY , Y /∈ C′, and
move all voters from vdummy to vY . This is possible because there are r − q dummy
districts and r − q set districts vY , Y /∈ C′, and each dummy district is adjacent to
each set district.

To show that this indeed gives a (t+1)q-biased (t, t)-dissolution, observe that we
move all t voters from each dissolved district to the adjacent nondissolved districts.
Each inner district receives Δs = t voters: t − 1 A-supporters and one B-supporter.
Since each inner district initially contained two A-supporters, party A wins a total
of t · q inner districts. Each set district vY , Y ∈ C′, receives t A-supporters and
initially contains one A-supporter. Furthermore, |C′| = q, and hence party A wins q
set districts in total and loses the remaining r − q set districts. Thus, we indeed
constructed a (t+ 1)q-biased (t, t)-dissolution.

For the “if” part, assume that there is some (t + 1)q-biased (t, t)-dissolution for
the constructed instance. Since s = Δs and G has 2t · q + 2m districts, after the
dissolution a total number of t · q + r districts is dissolved, and party A wins at least
(t+1)q districts and loses at most r− q districts. Observe that the only neighbors of
the dummy districts are the set districts, and hence, by the construction of function α,
party A cannot win any nondissolved district that receives/contains at least one voter
from a dummy district. Furthermore, since the set of the (r − q) dummy districts
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and the set of their neighboring districts build a bipartite induced subgraph, there are
(r − q) nondissolved districts which may receive/contain any voters from the dummy
districts. Thus, party A loses at least r−q nondissolved districts. Since rα = (t+1)q,
party A loses exactly r− q districts. In particular, each of the losing districts contains
at least one voter (originally) from a dummy district. This implies that party A has
to win each nondissolved set district, element district, inner district, or center district.
However, the construction of α forbids A to win a center district or to win an inner
district if one moves two B-supporters to it. Thus, we dissolve each center district and
move exactly one B-supporter from this center district to each of its adjacent inner
districts. As a direct consequence, all element districts are to be dissolved, and t− 1
voters are moved from each element district to its adjacent inner districts such that A
wins all t · q inner districts. There are t · q A-supporters left, one A-supporter from
each element district. These voters are to be moved to a set of exactly q winning set
districts each. Since each of these districts needs at least t A-supporters to win and
has exactly t adjacent element districts, C′ := {S ∈ C | vS ∈ Rα} partitions X .

5. Special graph classes. First, in Section 5.1, Biased Dissolution on planar
graphs is considered. This problem restriction is interesting especially in the political
districting context since the neighborhood relation between voting districts on a map
is typically planar. We will see that Dissolution (and thus Biased Dissolution)
unfortunately remains NP-hard for many choices of s and Δs.

Second, in Section 5.2, we show that Biased Dissolution is polynomial-time
solvable on cliques, that is, if voters may be moved unrestrictedly between dissolved
districts and nondissolved districts.

Finally, in Section 5.3, we consider Biased Dissolution on graphs of bounded
treewidth. This problem restriction is interesting in the context of distributed systems
since computers are often interconnected using a tree, star, or bus topology. By
presenting a formulation of Biased Dissolution in the monadic second-order logic
of graphs, we show that Biased Dissolution is solvable in linear time on graphs of
bounded treewidth when s and Δs are constant. This, however, should be understood
as a pure classification result rather than as an implementable algorithm.

5.1. Planar graphs. Computing star partitions is known to be NP-hard even on
subcubic grid graphs and split graphs [6]. By Proposition 3.4 in Section 3.2 it follows
that Dissolution is also NP-hard on planar graphs because grid graphs are planar.
However, the NP-hardness reduction on subcubic grid graphs requires stars with two
leaves such that the NP-hardness does only transfer to computing (1, 2)-dissolutions.
Here, we show that NP-hardness for Dissolution holds for any constants s and Δs

such that Δs divides s or s divides Δs.

By giving a polynomial-time reduction from the following NP-complete problem,
it is easy to derive NP-hardness results for Dissolution.

Perfect Planar H-Matching

Input: A planar undirected graph G = (V,E).
Question: Does G contain an H-factor V1, V2, . . . , V�|V |/|V (H)|� that partitions the

vertex set V such that G[Vi] is isomorphic to H for all i?

Perfect Planar H-Matching is NP-complete for any connected outerpla-
nar graph H with three or more vertices [5]. In particular, Perfect Planar H-

Matching is NP-complete for any H being a star of size at least three. This makes
it easy to prove the following theorem.

Theorem 5.1. Dissolution on planar graphs is NP-complete for all s �= Δs

such that Δs divides s or s divides Δs. It is polynomial-time solvable for s = Δs.
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Proof. We have already shown in Theorem 4.3 how to solve Dissolution in
polynomial time for s = Δs. Hence, now assume that Δs �= s and s divides s. Let
x := s/Δs ≥ 2. Due to Proposition 3.4 and the fact that Perfect Planar K1,x-

Matching is NP-complete [5], we can conclude that Dissolution is NP-complete
even on planar graphs.

It seems to be challenging to transfer the dichotomy result for Dissolution on
general graphs (Theorem 4.3) to the case of planar graphs. The main problem is
that the proof of Theorem 4.3 exploits Exact Cover by t-Sets to be NP-hard for
all t ≥ 3. The reduction from Exact Cover by t-Sets to Dissolution produces a
graph that contains the incidence graph of the Exact Cover by t-Sets instance as a
subgraph. To obtain a reduction to Dissolution on planar graphs, it is necessary to
have planar incidence graphs of Exact Cover by t-Sets. It is, however, unknown
whether this problem variant, called Planar Exact Cover by t-Sets, is NP-hard
for t ≥ 4. One might be misled to think that Exact Cover by t-Sets is NP-hard
for t ≥ 4 since it already is NP-hard for t = 3. However, the closely related problem
Planar 3-Sat, that is, 3-Sat with planar clause-literal incidence graphs, is NP-
complete, whereas Planar 4-Sat is polynomial-time solvable: One can show that
the clause-literal incidence graph of a Planar 4-Sat instance allows for a matching
such that each clause is matched to some literal. These literals can then be simply set
to true in order to satisfy all clauses. We consider the question of whether Planar

Exact Cover by 4-Sets is NP-hard to be of independent interest.

5.2. Cliques. If the neighborhood graph is a clique, that is, the districts are fully
connected such that voters can move from any dissolved district to any nondissolved
district, then the existence of an (s,Δs)-dissolution depends only on the number |V |
of districts, the district size s, and the size increase Δs. Clearly, a Dissolution

instance is a yes-instance if and only if d := |V | ·Δs/(s+Δs) is an integer. We now
show that Biased Dissolution is not as easy but still solvable in polynomial time if
the neighborhood graph is a clique. The basic idea is to dissolve districts with a large
number of A-supporters while minimizing the number of losing districts by letting the
districts with the smallest number of A-supporters lose.

Theorem 5.2. Biased Dissolution on cliques is solvable in O(|V |2) time.

Proof. As a matter of fact, we show how to solve the optimization version of
Biased Dissolution, where we maximize the number rα of winning districts. In-
tuitively, it appears to be a reasonable approach to dissolve districts pursuing the
following two objectives. Our first objective is that any losing district should contain
as few A-supporters as possible. Our second objective is that any winning district
should contain only as many A-supporters as necessary. Dissolving districts this way
minimizes the number of “wasted” A-supporters.

We now show that this greedy strategy is indeed optimal. To this end, let G =
(V,

(
V
2

)
) be a clique, let α be an A-supporter distribution over V , and let s and

Δs be the district size and the district size increase. With G being a complete graph,
we are free to move voters from any dissolved district to any nondissolved district.
Let μ := �(s +Δs)/2�+ 1 be the minimum number of A-supporters required to win
a district. Thus, a district with less than (μ − Δs) A-supporters can never win.
Define L := {v ∈ V | α(v) < μ−Δs} to be the set of nonwinnable districts.

Our strategy can be sketched as follows (see also Figure 10 for an illustration).
Assume that d districts have to be dissolved and � districts have to lose, and let
μ denote the number of A-supporters needed to win a district. Sort the districts
according to the number of A-supporters. Mark the � districts with the fewest number
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μ

μ−Δs

nonwinnable winnable losing winning

Fig. 10. Assume that we want to find a 4-biased dissolution for the instance illustrated on the
left-hand side, where each district is represented by a bar of height proportional to its number of
A-supporters. Following our first objective, we dissolve the two nonwinnable districts with the most
A-supporters and, following our second objective, we dissolve the winnable district with the most
A-supporters. Nondissolved districts are represented by bars filled with solid gray. Each dissolved
district is represented by a bar filled with an individual pattern. The diagram on the right illustrates
the solution, where the A-supporters of the two dissolved nonwinnable districts moved to the first
winnable district and the A-supporters of the dissolved winnable district moved to the three remaining
winnable districts.

of A-supporters as losing. Dissolve all nonmarked nonwinnable districts. If necessary,
then also dissolve winnable districts beginning with those with the most A-supporters
until d districts have been dissolved. Finally, check whether this gives a solution.

Our first claim corresponds to the first objective above, that is, the losing districts
should contain a minimal number of A-supporters.

Claim 1. Let v, w ∈ V be two districts with α(v) ≤ α(w). If there exists
an rα-biased dissolution where v is winning and w is losing, then there also exists
an rα-biased dissolution where v is losing and w is winning.

To verify Claim 1, let (D, z, zα, Rα) be an rα-biased dissolution. Let v ∈ Rα

and w ∈ (V \D)\Rα be two districts such that α(v) ≤ α(w). Now, simply exchange v
and w; that is, set R′

α := (Rα \ {v}) ∪ {w} and define for all (x, y) ∈ Z(D,G),

z′(x, y) :=

⎧⎪⎨
⎪⎩
z(x,w) if y = v,

z(x, v) if y = w,

z(x, y) else,

z′α(x, y) :=

⎧⎪⎨
⎪⎩
zα(x,w) if y = v,

zα(x, v) if y = w,

zα(x, y) else.

Since α(v) ≤ α(w), it is clear that (D, z′, z′α, R′
α) is also a well-defined rα-biased

dissolution.
The next claim basically corresponds to the second objective above, in the sense

that districts with a large number of A-supporters (possibly too large, that is, more
than the required μ) should be dissolved in order to move the voters more efficiently.

Claim 2. Let v, w ∈ V be two districts with α(v) ≤ α(w). Assume that there
exists an rα-biased (s,Δs)-dissolution with maximum rα. If v is dissolved, then the
following hold:
(i) If w is losing, then there also exists an rα-biased dissolution where w is dissolved

and v is losing.
(ii) If w is winning and v is winnable, that is, v �∈ L, then there exists an rα-biased

dissolution where w is dissolved and v is winning.
Claim 2 also holds by an exchange argument similar to the one above: Let

(D, z, zα, Rα) be an rα-biased dissolution, and let v ∈ D, w ∈ V \D be two districts
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such that α(v) ≤ α(w). Again, we exchange v and w by setting D′ := D \ {v} ∪ {w}.
Since

∑
x∈D′ α(x) ≥ ∑

x∈D α(x) and since we are free to move voters arbitrarily be-
tween districts, it is clear that it is always possible to find an rα-biased dissolution
such that D′ is the set of dissolved districts. In particular, if v is a winnable district,
then it is always possible to make v a winning district.

Using Claims 1 and 2 above, we now show how to compute an optimal biased
dissolution. In order to find a biased dissolution with the maximum number of win-
ning districts, we search for a dissolution that loses a minimum number of remaining
districts. Thus, for each � ∈ {0, . . . , r}, we check whether it is possible to dissolve
d districts such that at most � of the remaining r districts lose. To this end, as-
sume that the districts v1, . . . , vn are ordered by increasing number of A-supporters,
that is, α(v1) ≤ α(v2) ≤ · · · ≤ α(vn), and let V� := {v1, . . . , v�}. Now, if there ex-
ists an (r − �)-biased dissolution, then there also exists an (r − �)-biased dissolution
where the losing districts are exactly V�. This follows by repeated application of the
exchange arguments of Claim 1 and Claim 2(i). Hence, given �, we have to check
whether there is a set D ⊆ V \ V� of d districts that can be dissolved in such a way
that all nondissolved districts in V \ (V� ∪D) win and the districts in V� lose.

First, note that in order to achieve this, all districts in L\V� have to be dissolved
because they cannot win in any way. Clearly, if |L \ V�| > d, then it is simply not
possible to lose only � districts, and we can immediately go to the next iteration with
� := � + 1. Therefore, we assume that |L \ V�| ≤ d and let d′ := d − |L \ V�| be the
number of additional districts to dissolve in V \ (L ∪ V�). By Claim 2(ii), it follows
that we can assume that the d′ districts with the maximum number of A-supporters
are dissolved, that is, V d′

:= {vn−d′+1, . . . , vn}. Thus, we set D := L \ V� ∪ V d′
and

check whether there are enough A-supporters in D to let all r− � remaining districts
in V \ (V� ∪D) win.

Sorting the districts by the number of A-supporters (in a preprocessing step)
requires O(n log n) comparisons. Then, for up to n values of �, to check whether the
remaining districts in V \ (V� ∪D) can win requires O(n) arithmetic operations each.
Thus, assuming constant-time arithmetic, we end up with a total running time in
O(n2).

5.3. Graphs of bounded treewidth. Yuster [29, Theorem 2.3] showed that
H-Factor is solvable in linear time on graphs of bounded treewidth when the size
of H is constant. This includes the case of finding x-star partitions, that is, (x, 1)-
dissolutions (respectively, (1, x)-dissolutions) when x is constant. We can show that
the more general problem Biased Dissolution is solvable in linear time on graphs
of bounded treewidth when s and Δs are constants. In terms of parameterized com-
plexity analysis [9, 14, 24], this shows that Biased Dissolution is fixed-parameter
tractable with respect to the combined parameter (t, s,Δs), where t is the treewidth
of the neighborhood graph. Note that these results are basically for classification only
since the corresponding algorithms come along with enormous constants hidden in the
O-notation.

Theorem 5.3. Biased Dissolution is solvable in linear time on graphs of
constant treewidth when s and Δs are constants.

To prove Theorem 5.3, we exploit a general result that a maximum-cardinality
set satisfying a constant-size formula in monadic second-order logic for graphs can be
computed in linear time on graphs of constant bounded treewidth [3]. The set whose
size we want to maximize is the set Rα of winning districts. For the remainder of this
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Fig. 11. Illustration of transforming a Biased Dissolution instance (left) into an instance of
the auxiliary multigraph problem (right).

subsection, we consider multigraphs; that is, our graphs may contain multiple edges
between any two vertices.

Definition 5.4 (monadic second-order logic for graphs). A formula φ of the
monadic second-order logic for graphs may consist of the logic operators ∨,∧,¬, vertex
variables, edge variables, set variables, quantifiers ∃ and ∀ over vertices, edges, and
sets, and the predicates
(i) x ∈ X for a vertex or edge variable x and a set X,
(ii) inc(e, v), being true if e is an edge incident to the vertex v,
(iii) adj(v, w), being true if v and w are adjacent vertices, and
(iv) equality of vertex variables, edge variables, and set variables.

We point out that a constant-size formula in monadic second-order logic for a
problem does not prove only the mere existence of a linear-time algorithm on graphs of
bounded treewidth; the formula itself can be converted into a linear-time algorithm [8,
Chapter 6].

Proof of Theorem 5.3. We model Biased Dissolution as a formula in monadic
second-order logic. Since monadic second-order logic does not allow us to count
the number of voters moved from one district to another or to count how many A-
supporters a district contains, we first model Biased Dissolution as a problem on an
auxiliary graph. For constant s and Δs, the transformation of a Biased Dissolution

instance to this auxiliary graph can be done in linear time and works as follows (see
Figure 11):

1. For each input district of Biased Dissolution, introduce a vertex and at-
tach to it as many degree-one vertices as the district has A-supporters.

2. Between two neighboring districts, add s + 1 (multiple) edges between their
representing vertices. The s + 1 (multiple) edges represent potential moves
of voters from one district to another.

3. Finally, connect each pair of vertices representing a pair of neighboring dis-
tricts by s parallel subdivided edges. These represent potential moves of
A-supporters.

Note that, by adding s+1 (multiple) edges between any two vertices representing
neighboring districts, we ensure that, in the graph resulting from the above construc-
tion, a vertex has degree one if and only if it represents an A-supporter. The vertex
representing an A-supporter belongs to the district represented by its neighbor. More-
over, a vertex has degree two if and only if it represents a possible movement of an
A-supporter of one district to another.

A dissolution now does not contain a function z moving voters from one district
to another (see Definition 2.1) but a set Z of selected edges representing such move-
ments. Similarly, the A-supporter movement is no longer modeled as a function zα
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(see Definition 2.2) but as a set of vertices Zα representing such movements. Hence,
we search for a maximum vertex-set Rα that satisfies the following formula in monadic
second-order logic of graphs:

maxRα s. t. ∃D∃Z∃Zα[movements ∧ A-movements ∧ districts

∧ prop-a ∧ prop-b ∧ prop-c ∧ prop-d ∧ prop-e],

where prop-a, prop-b, prop-c, prop-d, and prop-e will be predicates ensuring that prop-
erties (a) and (b) of Definition 2.1 and properties (a)–(c) of Definition 2.2 of (biased)
dissolution are satisfied, D will be the set of dissolved districts, Z the set of voter
movements, and Zα the set of A-supporter movements. To ensure this, we define

districts := ∀v[(v ∈ D ∨ v ∈ Rα) =⇒ degree-greater-two(v)]

so that it is true if and only if each element in D ∪ Rα is a vertex with degree more
than two, that is, it represents a district, where

degree-greater-two(v) := ∃v1∃v2∃v3[ v1 �= v2 ∧ v1 �= v3 ∧ v2 �= v3

∧ adj(v1, v) ∧ adj(v2, v) ∧ adj(v3, v)]

is true if and only if v has at least three neighbors. Moreover, we define

movements := ∀e[ e ∈ Z =⇒ ∃v1∃v2[inc(e, v1) ∧ inc(e, v2)

∧ degree-greater-two(v1) ∧ v1 ∈ D

∧ degree-greater-two(v2) ∧ v2 /∈ D]]

so that it is true if and only if each element in the set Z is an edge representing a
movement and

A-movements := ∀a[ a ∈ Zα =⇒ ∃v1∃v2[adj(a, v1) ∧ adj(a, v2)

∧ v1 ∈ D ∧ v2 /∈ D ∧ ¬degree-greater-two(a)]]

so that it is true if and only if each element in the set Zα is a vertex represent-
ing a movement of an A-supporter. It remains to give the definitions of the predi-
cates prop-a, prop-b, prop-c, prop-d, and prop-e. We define

prop-a := ∀v[v ∈ D =⇒ ∃Z ′[cards(Z ′) ∧ (∀e[e ∈ Z ′ ⇐⇒ move-from(e, v)])]]

so that it is true if and only if for each dissolved district v there is a set of s edges
representing movements out of v, where

move-from(e, v) := v ∈ D ∧ e ∈ Z ∧ inc(e, v)

is true if and only if e is an edge representing a movement out of v and

cardi(X) := ∃x1∃x2 . . .∃xi

[( i∧
j=1

xi ∈ X
)
∧
( i∧
j=1

i∧
k=j+1

(xj �= xk)
)

∧ ∀x
[
x ∈ X =⇒

i∨
j=1

xj = x
]]
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for 1 ≤ i ≤ s is a constant-size formula that is true if and only if the set X has
cardinality i. Next, we define

prop-b := ∀v[ (degree-greater-two(v) ∧ v /∈ D)

=⇒ ∃Z ′[cardΔs(Z
′) ∧ (∀e[e ∈ Z ′ ⇐⇒ move-to(e, v)])]]

so that it is true if and only if there is a set Z ′ of Δs edges representing movements
to each nondissolved district v, where

move-to(e, v) := v /∈ D ∧ e ∈ Z ∧ inc(e, v)

is true if and only if e is an edge representing a movement to v. Next, we define

prop-c := ∀v∀u[v ∈ D ∧ u /∈ D∧ adj(v, u) =⇒ ∃Z ′∃Z ′
α[smaller-equal(Z ′

α, Z
′)

∧ (∀e[e ∈ Z ′ ⇐⇒ move-from(e, v)

∧move-to(e, u)])

∧ (∀a[a ∈ Z ′
α ⇐⇒ A-move-from(a, v)

∧ A-move-to(a, u)])]]

so that it is true if and only if the number of vertices representing A-supporters
movements from v to u is at most the number of edges representing movements from v
to u, where

smaller-equal(X,Y ) :=

s∨
i=1

s∨
j=i

(cardi(X) ∧ cardj(Y ))

is a constant-size formula that is true if and only if |X | ≤ |Y | and
A-move-from(a, v) := v ∈ D ∧ a ∈ Zα ∧ adj(v, a),

A-move-to(a, u) := u /∈ D ∧ a ∈ Zα ∧ adj(u, a)

are true if and only if a is a vertex representing an A-supporter movement from v or
to u, respectively. Next, we define

prop-d := ∀v[v ∈ D =⇒ ∃Z ′
α∃A[equal-card(Z ′

α, A)

∧ ∀a[a ∈ A ⇐⇒ A-supporter-of(a, v)]

∧ ∀a[a ∈ Z ′
α ⇐⇒ A-move-from(a, v)]]]

so that it is true if and only if the number of A-supporter movements out of a district v
equals the number of its A-supporters, where

equal-card(X,Y ) :=

s∨
i=1

(cardi(X) ∧ cardi(Y ))

is a constant-size formula that is true if and only if |X | = |Y | and
A-supporter-of(a, v) := adj(a, v) ∧ ∀u[adj(a, u) =⇒ u = v]

is true if and only if a is a vertex representing an A-supporter in district v. Finally,
we define

prop-e := ∀v[v ∈ Rα =⇒ ∃A[card>(s+Δs)/2(A)

∧ ∀a[a ∈ A ⇐⇒ A-supporter-of(a, v)

∨ A-move-to(a, v)]]]
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so that for each district v ∈ Rα there are more than (s+Δs)/2 vertices which either
represent A-supporters of district v or represent A-supporter movements to district v,
where

card>i(X) :=

s+Δs∨
j=�i	+1

cardj(X)

is a constant-size formula that is true if and only if i < |X | ≤ s + Δs with i <
s+Δs.

Without providing any details, we claim that one can also prove Theorem 5.3
by using an explicit dynamic programming algorithm that works on a so-called tree
decomposition of a graph. The algorithm runs in (Δs + s)O(t2) · nO(1) time, but it is
very technical and its correctness proof is very tedious, while practical applicability
still seems out of reach.

6. Conclusion. We initiated a graph-theoretic approach to concrete redistribu-
tion problems with potential applications in such diverse areas as political districting,
green computing, and economization of work processes. Obviously, the two basic
problems Dissolution and Biased Dissolution concern highly simplified situa-
tions and will not be able to model all interesting aspects of redistribution scenarios.
For instance, our constraint that before and after the dissolution all vertex loads
should be perfectly balanced may be too restrictive for many applications. All in all,
we consider our simple (and yet fairly realistic) models as a first step into a promis-
ing direction for future research. In particular, this may yield a stronger linking of
graph-theoretic concepts with districting scenarios and other application scenarios.

We end with a few specific challenges for future research. We left open whether
the P versus NP dichotomy for general graphs fully carries over to the planar case:
It might be possible that planar graphs allow for some further tractable cases with
respect to the relation between old and new district sizes. To this end, it might help
to answer the question of whether Planar Exact Cover by 4-Sets is NP-hard.
Since Planar Exact Cover by 4-Sets is a very natural and simple problem on
planar graphs, we believe that this question is of independent interest. Moreover,
with redistricting applications in mind it might be of interest to study special cases
of planar graphs (such as grid-like structures) in the quest of finding polynomial-time
solvable special cases of network-based vertex dissolution problems. Having identi-
fied several NP-complete special cases of Dissolution and Biased Dissolution, it
is a natural endeavor to investigate their polynomial-time approximability and their
parameterized complexity; in the latter case one also needs to identify fruitful param-
eterizations. Motivated by our results, parameters measuring the distance to acyclic
graphs (cf. Theorem 5.3) or to complete graphs (cf. Theorem 5.2) seem promising in
the spirit of distance from triviality parameterizations [17, 25]. Furthermore, also the
maximum degree of a vertex should not be too large in many applications. On the one
hand, since the partition of a graph into paths of length three, which is a special case
of our Dissolution problem, is already NP-hard on graphs with maximum degree
at most three [20, 23], the parameter “maximum degree” is not interesting as a single
parameter. On the other hand, the maximum degree might be worth considering in
combination with other parameters.
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