1,661 research outputs found

    Machine learning-guided synthesis of advanced inorganic materials

    Full text link
    Synthesis of advanced inorganic materials with minimum number of trials is of paramount importance towards the acceleration of inorganic materials development. The enormous complexity involved in existing multi-variable synthesis methods leads to high uncertainty, numerous trials and exorbitant cost. Recently, machine learning (ML) has demonstrated tremendous potential for material research. Here, we report the application of ML to optimize and accelerate material synthesis process in two representative multi-variable systems. A classification ML model on chemical vapor deposition-grown MoS2 is established, capable of optimizing the synthesis conditions to achieve higher success rate. While a regression model is constructed on the hydrothermal-synthesized carbon quantum dots, to enhance the process-related properties such as the photoluminescence quantum yield. Progressive adaptive model is further developed, aiming to involve ML at the beginning stage of new material synthesis. Optimization of the experimental outcome with minimized number of trials can be achieved with the effective feedback loops. This work serves as proof of concept revealing the feasibility and remarkable capability of ML to facilitate the synthesis of inorganic materials, and opens up a new window for accelerating material development

    Efficient Localization of Discontinuities in Complex Computational Simulations

    Full text link
    Surrogate models for computational simulations are input-output approximations that allow computationally intensive analyses, such as uncertainty propagation and inference, to be performed efficiently. When a simulation output does not depend smoothly on its inputs, the error and convergence rate of many approximation methods deteriorate substantially. This paper details a method for efficiently localizing discontinuities in the input parameter domain, so that the model output can be approximated as a piecewise smooth function. The approach comprises an initialization phase, which uses polynomial annihilation to assign function values to different regions and thus seed an automated labeling procedure, followed by a refinement phase that adaptively updates a kernel support vector machine representation of the separating surface via active learning. The overall approach avoids structured grids and exploits any available simplicity in the geometry of the separating surface, thus reducing the number of model evaluations required to localize the discontinuity. The method is illustrated on examples of up to eleven dimensions, including algebraic models and ODE/PDE systems, and demonstrates improved scaling and efficiency over other discontinuity localization approaches

    FPGA-based Anomalous trajectory detection using SOFM

    Get PDF
    A system for automatically classifying the trajectory of a moving object in a scene as usual or suspicious is presented. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a reconfigurable hardware architecture (Field Programmable Gate Array) to cluster trajectories acquired over a period, in order to detect novel ones. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 15\% classification error, showing the robustness of our approach over others in literature and the speed-up over the use of conventional microprocessor as compared to the use of an off-the-shelf FPGA prototyping board

    Parkinson\u27s Symptoms quantification using wearable sensors

    Get PDF
    Parkinsonā€™s disease (PD) is a common neurodegenerative disorder affecting more than one million people in the United States and seven million people worldwide. Motor symptoms such as tremor, slowness of movements, rigidity, postural instability, and gait impairment are commonly observed in PD patients. Currently, Parkinsonian symptoms are usually assessed in clinical settings, where a patient has to complete some predefined motor tasks. Then a physician assigns a score based on the United Parkinsonā€™s Disease Rating Scale (UPDRS) after observing the motor task. However, this procedure suffers from inter subject variability. Also, patients tend to show fewer symptoms during clinical visit, which leads to false assumption of the disease severity. The objective of this study is to overcome this limitations by building a system using Inertial Measurement Unit (IMU) that can be used at clinics and in home to collect PD symptoms data and build algorithms that can quantify PD symptoms more effectively. Data was acquired from patients seen at movement disorders Clinic at Sanford Health in Fargo, ND. Subjects wore Physilog IMUs and performed tasks for tremor, bradykinesia and gait according to the protocol approved by Sanford IRB. The data was analyzed using modified algorithm that was initially developed using data from normal subjects emulating PD symptoms. For tremor measurement, the study showed that sensor signals collected from the index finger more accurately predict tremor severity compared to signals from a sensor placed on the wrist. For finger tapping, a task measuring bradykinesia, the algorithm could predict with more than 80% accuracy when a set of features were selected to train the prediction model. Regarding gait, three different analysis were done to find the effective parameters indicative of severity of PD. Gait speed measurement algorithm was first developed using treadmill as a reference. Then, it was shown that the features selected could predict PD gait with 85.5% accuracy

    Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integrating data from multiple global assays and curated databases is essential to understand the spatio-temporal interactions within cells. Different experiments measure cellular processes at various widths and depths, while databases contain biological information based on established facts or published data. Integrating these complementary datasets helps infer a mutually consistent transcriptional regulatory network (TRN) with strong similarity to the structure of the underlying genetic regulatory modules. Decomposing the TRN into a small set of recurring regulatory patterns, called network motifs (NM), facilitates the inference. Identifying NMs defined by specific transcription factors (TF) establishes the framework structure of a TRN and allows the inference of TF-target gene relationship. This paper introduces a computational framework for utilizing data from multiple sources to infer TF-target gene relationships on the basis of NMs. The data include time course gene expression profiles, genome-wide location analysis data, binding sequence data, and gene ontology (GO) information.</p> <p>Results</p> <p>The proposed computational framework was tested using gene expression data associated with cell cycle progression in yeast. Among 800 cell cycle related genes, 85 were identified as candidate TFs and classified into four previously defined NMs. The NMs for a subset of TFs are obtained from literature. Support vector machine (SVM) classifiers were used to estimate NMs for the remaining TFs. The potential downstream target genes for the TFs were clustered into 34 biologically significant groups. The relationships between TFs and potential target gene clusters were examined by training recurrent neural networks whose topologies mimic the NMs to which the TFs are classified. The identified relationships between TFs and gene clusters were evaluated using the following biological validation and statistical analyses: (1) Gene set enrichment analysis (GSEA) to evaluate the clustering results; (2) Leave-one-out cross-validation (LOOCV) to ensure that the SVM classifiers assign TFs to NM categories with high confidence; (3) Binding site enrichment analysis (BSEA) to determine enrichment of the gene clusters for the cognate binding sites of their predicted TFs; (4) Comparison with previously reported results in the literatures to confirm the inferred regulations.</p> <p>Conclusion</p> <p>The major contribution of this study is the development of a computational framework to assist the inference of TRN by integrating heterogeneous data from multiple sources and by decomposing a TRN into NM-based modules. The inference capability of the proposed framework is verified statistically (<it>e.g</it>., LOOCV) and biologically (<it>e.g</it>., GSEA, BSEA, and literature validation). The proposed framework is useful for inferring small NM-based modules of TF-target gene relationships that can serve as a basis for generating new testable hypotheses.</p

    Development of track-driven agriculture robot with terrain classification functionality / Khairul Azmi Mahadhir

    Get PDF
    Over the past years, many robots have been devised to facilitate agricultural activities (that are labor-intensive in nature) so that they can carry out tasks such as crop care or selective harvesting with minimum human supervision. It is commonly observed that rapid change in terrain conditions can jeopardize the performance and efficiency of a robot when performing agricultural activity. For instance, a terrain covered with gravel produces high vibration to robot when traversing on the surface. In this work, an agricultural robot is embedded with machine learning algorithm based on Support Vector Machine (SVM). The aim is to evaluate the effectiveness of the Support Vector Machine in recognizing different terrain conditions in an agriculture field. A test bed equipped with a tracked-driven robot and three types o f terrain i.e. sand, gravel and vegetation has been developed. A small and low power MEMS accelerometer is integrated into the robot for measuring the vertical acceleration. In this experiment, the vibration signals resulted from the interaction between the robot and the different type of terrain were collected. An extensive experimental study was conducted to evaluate the effectiveness of SVM. The results in terms of accuracy of two machine learning techniques based on terrain classification are analyzed and compared. The results show that the robot that is equipped with an SVM can recognize different terrain conditions effectively. Such capability enables the robot to traverse across changing terrain conditions without being trapped in the field. Hence, this research work contributes to develop a self-adaptive agricultural robot in coping with different terrain conditions with minimum human supervision

    Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning

    Get PDF
    For centuries humans have been fascinated by the natural beauty of horses in motion and their different gaits. Gait classification (GC) is commonly performed through visual assessment and reliable, automated methods for real-time objective GC in horses are warranted. In this study, we used a full body network of wireless, high sampling-rate sensors combined with machine learning to fully automatically classify gait. Using data from 120 horses of four different domestic breeds, equipped with seven motion sensors, we included 7576 strides from eight different gaits. GC was trained using several machine-learning approaches, both from feature-extracted data and from raw sensor data. Our best GC model achieved 97% accuracy. Our technique facilitated accurate, GC that enables in-depth biomechanical studies and allows for highly accurate phenotyping of gait for genetic research and breeding. Our approach lends itself for potential use in other quadrupedal species without the need for developing gait/animal specific algorithms
    • ā€¦
    corecore